

SUPRA SERVER PDM

RDM Administration Guide
(VMS)

P25-8220-45

SUPRA® Server PDM RDM Administration Guide

Publication Number P25-8220-45

 1990, 1995−2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220-45, is dated January 15, 2002. This document supports
Release 2.4 of SUPRA Server.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

RDM Administration Guide v

Contents

About this book ix
Using this document... ix

Document organization ..x
Conventions .. xi

SUPRA Server documentation series .. xiii

Introduction to the Relational Data Manager 15
The role of the RDM in the SUPRA Server system...18
How RDM signs on to the database..19
How RDM handles view-open requests ..21
SUPRA Server's three schema architecture ...23

The internal schema: Physical Data Description...24
The conceptual schema: base views ..25
The external schema: derived views..26
How the RDM fits into the three schema architecture....................................27

Views...28
Two types of views ...29
How views are used ...29
User views..30

RDM reports..31
RDM security...33
Example database ..34

Parts of a view 35
Column definitions...36
Access definitions ...50

View design considerations 73
How RDM constructs rows..74

Database penetration...75
Database sweep ..77

Contents

vi P25-8220-45

Navigational constraints and boundary conditions .. 78
Processing derived views .. 80

Keyed access to data ... 83
Unique keys ... 86
Non-unique keys.. 88
Constant keys .. 90
Secondary access keys ... 92
Generic reads .. 93

Domains.. 96
Null values ... 98
Default values .. 101
Validation options .. 103
Join compatibility ... 105

Referential integrity with RDM .. 106
Integrity rules and checking ... 108
Foreign key value integrity ... 109
Insertion integrity.. 110
Update integrity.. 112
GET processing... 115
Deletion integrity .. 116
Referential integrity examples ... 121

Shared column values .. 126
View-to-user relationships .. 128

Physical and logical database changes 131
Overview... 131
Physical and logical database actions .. 131

Defining and testing views using DBAID 135
Invoking DBAID .. 136
Signing on to DBAID... 138
Using DBAID commands.. 139

* command .. 146
= command.. 148
BIND command ... 149
BY-LEVEL command... 150
BYE command... 152
CAUTIOUS command ... 153
COLUMN-DEFN command ... 154
COLUMN-TEXT command.. 158
COMMIT command ... 159
COPY command.. 160
DEFINE command... 161
DELETE command.. 162
DENY command.. 164

Contents

RDM Administration Guide vii

EDIT command ..165
ERASE command ..166
FIELD-DEFN command ...167
FIELD-TEXT command..170
FORGET command ...172
GET command...173
GO command...179
INSERT command ...183
KEEP command...188
line-number command ...189
LINESIZE command ..190
LIST command...191
MARK command..193
MARKS command..194
OPEN command ..195
PAGESIZE command ..198
PERMIT command...199
PRINT-STATS command...200
RELEASE command..201
REMOVE command...202
RENUMBER command..203
RESET command ..204
SAVE command...205
SHOW-NAVIGATION command ...207
SIGN-OFF command ...208
SIGN-ON command...209
STATS command...210
STATS-OFF command ..211
STATS-ON command..212
SURE command ..213
UNDEFINE command..214
UPDATE command..215
USER-LIST command ...218
VIEW-DEFN command..219
VIEWS command...221
VIEWS-FOR-USER command ..222

RDM status indicators 223
Function Status Indicators (FSIs)..224
Column Attribute Status Indicators (ASIs)...226
Validity Status Indicators (VSIs) ..230

Contents

viii P25-8220-45

Optimizing view performance using bound and global views 231
Differences between bound and global views .. 231

Advantages of using global views.. 234
Changing view text: a note of caution... 235

Bound views.. 236
Binding a view.. 236
Ensuring that you update a bound view... 239

Global views.. 241
Creating a Global View file .. 243
Example Global View input files .. 257
Example Global View report file... 258

Options for RDM access to the SUPRA Server directory... 259
Running without the directory .. 259
Running with the directory and with Global Views 260
Running with the directory alone.. 260

Generating RDM reports 261
RDM reports ... 263
Stage one—specifying the reports to be produced... 264
Stage two—generating the reports ... 268

DBAID quick reference 269
DBAID commands .. 269
Definitions ... 275
Status indicators ... 276

ASI values.. 276
FSI values.. 277
VSI values.. 278

Example RDM reports 279
DBA report format description .. 280
Domain usage report format description .. 285
Logical Data Item report format description.. 288
Physical Data Item report format description.. 291
Validation Table Usage report format description .. 294

Example user validation exits 295

Example database 305
Relations in the internal schema... 305
Base views in the conceptual schema.. 310
Derived views in the external schema .. 314

Index 319

RDM Administration Guide ix

About this book

Using this document
To administer the RDM, this manual provides you with information
necessary for:

♦ Understanding the overall purpose of the RDM and its role in the
SUPRA Server system

♦ Understanding the parts of a view

♦ Creating views best suited to your needs by:

- Understanding some important design considerations

- Recognizing modifications you must make as a result of physical
and logical database changes

- Interpreting the status indicators RDM returns to show view
processing results

♦ Designing and testing views

♦ Optimizing view performance

♦ Supplementing your understanding of the concepts explained in this
manual by providing an example database called EXAMPL

About this book

x P25-8220-45

Document organization
The information in this manual is organized as follows:

Chapter 1—Introduction to the Relational Data Manager
Introduces you to the Relational Data Manager. Shows you how the
RDM fits in the SUPRA Server system, how RDM signs on to the
SUPRA Server Directory, and describes SUPRA Server's
three-schema architecture.

Chapter 2—Parts of a view
Describes the two parts of a view (column and access definitions),
and provides the syntax for defining them.

Chapter 3—View design considerations
Provides information you should consider before defining your views.

Chapter 4—Physical and logical database changes
Shows you further actions you should take as a result of physical and
logical changes to the database.

Chapter 5—Defining and testing views using DBAID
Shows you how to sign on to DBAID to test and define your views,
and gives syntax for the DBAID commands.

Chapter 6—RDM status indicators
Explains each of the status indicators that RDM provides to show
view processing results.

Chapter 7—Optimizing view performance using bound and global
views
Explains how to use bound and global views to optimize view
performance.

Chapter 8—Generating RDM reports
Shows you how to produce RDM reports. You must have SPECTRA
to run the RDM reports. SPECTRA is not available in the OpenVMS
AXP environment.

Appendix A—DBAID quick reference
Provides a quick reference for DBAID commands.

Appendix B—Example RDM reports
Provides example RDM reports, using the example database
described in Appendix D.

Appendix C—Example user validation exits
Shows example user validation exits.

Appendix D—Example database
Describes the database used in examples throughout this manual.

Index

Using this document

RDM Administration Guide xi

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example illustrates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by brackets
represent optional alternatives, one
of which can be selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.
In the example you must enter ON
or OFF when using the MONITOR
statement.

MONITOR
ON
OFF

About this book

xii P25-8220-45

Convention Description Example

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

(WAIT)
(NOWAIT)

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item can
be repeated.
In the example you can enter
multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
In the example you must substitute
the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a required keystroke.
Multiple keystrokes are hyphenated.

ALT-TAB

SUPRA Server documentation series

RDM Administration Guide xiii

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest for VMS
Systems, P25-9062.

Overview

♦ SUPRA Server PDM Digest for VMS Systems, P25-9062

Getting started

♦ SUPRA Server PDM VMS Installation Guide, P25-0147

♦ SUPRA Server PDM VMS Tutorial, T25-2263

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(PDM/RDM Support for UNIX & VMS), P25-0022

Database administration tasks

♦ SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260

♦ SUPRA Server PDM System Administration Guide (VMS), P25-0130

♦ SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220

♦ SUPRA Server PDM Directory Views (VMS), P25-1120

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220**

About this book

xiv P25-8220-45

Application programming tasks

♦ SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240

♦ SUPRA Server PDM System Administration Guide (VMS), P25-0130

♦ SUPRA Server PDM RDM Administration Guide (VMS), P25-8220

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ MANTIS Planning Guide, P25-1315**

Report tasks

♦ SPECTRA User’s Guide, P26-9561**

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

Educational material is available from your regional Cincom education
department.

RDM Administration Guide 15

1
Introduction to the Relational Data
Manager

The Relational Data Manager (RDM) processes applications' requests to
access the physical data held in PDM and RMS data sets and presents it
as though it were arranged in two-dimensional tables. These two-
dimensional tables are referred to as logical views or simply, views. The
Database Administrator (DBA) designs views from data stored on the
SUPRA Server directory database SUPRAD. The DBA can create two
kinds of views: base views or derived views. Base views access the
physical data, derived views access only other views; not the physical
data sets themselves.

Chapter 1 Introduction to the Relational Data Manager

16 P25-8220-45

One of the biggest advantages of the RDM is that it enables application
programmers and end users to use these views to access the database
without concern for the location of the data. RDM also provides:

♦ Relational Data Manipulation Language (RDML). Allows
programmers to retrieve and modify database contents. Refer to the
SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240,
for details on using RDML.

♦ DBAID. Allows DBAs to define and test views. DBAID also has
commands that programmers can use to test whether a view meets
application requirements. See “Defining and testing views using
DBAID” on page 135 for information on using DBAID.

♦ Binding views. Allows the DBA to place pre-opened copies of
logical views on the SUPRA Server Directory database SUPRAD.
See “Optimizing view performance using bound and global views” on
page 231 for more information on bound views.

♦ Globalizing views. Allows the DBA to place pre-opened copies of
frequently used logical views in global memory. See “Optimizing view
performance using bound and global views” on page 231 for more
information on global views.

Both bound views and global views reduce processing overhead because
the view-open is only performed once (at the initial RDM sign-on);
subsequent RDM sign-ons simply map to the open view. Bound views
are stored on the SUPRA Server Directory, global views are stored in
global memory. See “Optimizing view performance using bound and
global views” on page 231 for more information on how to use bound and
global views and the differences between them.

SUPRA Server documentation series

RDM Administration Guide 17

File types supported by the RDM

In OpenVMS environments, the RDM can access both Physical Data
Manager (PDM) data sets and RMS data sets. RDM accesses PDM
data sets through the PDM; however, it accesses RMS data sets directly.

To use RMS data sets, define them to the Directory using the DBA utility
(Create RMS Data Set function). Then define the views and physical
access requirements. RDML programs written in COBOL, FORTRAN,
BASIC, and MANTIS can then access data held on RMS data sets
through RDM as they would data held on PDM data sets.

For information about using PDM data sets, refer to the SUPRA Server
PDM System Administration Guide (VMS), P25-0130.

The SUPRA Server Physical Data Manager (PDM) does not access RMS
data sets. Therefore, PDM recovery logging is not available for RMS
data sets. However, VMS Recovery Unit Journaling is available as a
product option.

Application programs that already access RMS data sets directly need
not be changed. However, they are not insulated from change until they
are rewritten using RDM for access.
All views must be stored on the SUPRA Server Directory database
SUPRAD before application programs and users can access them. You
can create views using either the DBA utility or the DBAID utility. The
difference is that DBAID allows you to test your views before putting them
into production; SUPRA DBA does not. Refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260, for more
information on using DBA, and/or “Defining and testing views using
DBAID” on page 135 for information on using DBAID.

Chapter 1 Introduction to the Relational Data Manager

18 P25-8220-45

The role of the RDM in the SUPRA Server system
The following figure shows the SUPRA Server system, including SUPRA
Server components and other related products. As shown, the RDM
receives application requests and accesses the physical data held on the
Directory through the PDM. Note that the RDM accesses VMS RMS data
sets directly (not through the PDM).

RMS
Data
Files

PDM
Data
Files

PDML
Applications

RDM

RDML
Applications

PDM

SPECTRA*

MANTIS

*SPECTRA is not available in OpenVMS AXP environments

SUPRA
Server

Directory

How RDM signs on to the database

RDM Administration Guide 19

How RDM signs on to the database
The following figure shows what happens when RDM signs on to the
database. If you are using global views, the RDM may or may not require
access to the SUPRA Server Directory database.

Global views are opened and placed in global memory by the first RDM
sign-on, remaining available for subsequent view requests. If you use
global views, the RDM accesses the Global View file for run time
information, not the SUPRA Server Directory. Therefore, you could place
all your views in a Global View file and not require access to the SUPRA
Server Directory at all. You also have the option of running your system
using both a Global View file and the SUPRA Server Directory. For more
information on using Global View files, see “Optimizing view performance
using bound and global views” on page 231.

Chapter 1 Introduction to the Relational Data Manager

20 P25-8220-45

No

Is the logical
GVSCHEMA

defined? Yes

No

First RDM
Sign-on to the

Database

No

Yes

Is Global Section
for Global View file

in memory?

Yes

Is the Global View
file user/password

combination
valid?

Task signed-on
to the database

(if database description
 successfully loaded)

Create Global Section,
load file identified by

the logical GVSCHEMA

Map to
Global View

file.

Is the logical
CSI_NODIRECTORY

defined as TRUE?
(i.e., the SUPRA
Directory is not

available)

Sign-on fails
Yes

Is the
user/password
combination

valid?

No

Yes

How RDM handles view-open requests

RDM Administration Guide 21

How RDM handles view-open requests
After successful sign-on to the database, RDM handles the view-open
request. When RDM receives a view-open request, it does the following:

1. Checks if global views are being used. If so, RDM uses the global
version of the view (stored in global memory at the first RDM sign-
on).

2. If global views are not being used, RDM checks for a bound version
of the view (stored on the SUPRA Server Directory database). If
bound views are being used, RDM uses the bound version of the
view.

3. If there is no global or bound version of the view, RDM uses the view
definition text as stored on the SUPRA Server Directory database.

Chapter 1 Introduction to the Relational Data Manager

22 P25-8220-45

The following figure shows this process.

No No

Are Global
Views being used?

Is this view
in the Global

View file?

Is this user
authorized to use

this view?

Get view information
from the Directory

database SUPRAD

Does view
exist?

Is the view bound?

Use
Bound
View

Use
View
Text

Is this user
authorized to
use the view?

YesNo

No Yes

YesNo

No Yes

Yes

Yes

YesNo

Successful Sign-on

Task

View-open

View-open
Successful

View-open
Fails

View-open
Fails

View-open
Fails

Is the logical
CSI_NODIRECTORY

defined as TRUE?
(i.e., the SUPRA
Directory is not

available)

SUPRA Server's three schema architecture

RDM Administration Guide 23

SUPRA Server's three schema architecture
SUPRA Server uses three schema architecture to provide a physical and
logical implementation that is easy to maintain and that can be changed
with minimum impact to applications. Three schema architecture
consists of the internal, conceptual, and external schema.

The internal schema contains physical definitions of data as held on the
SUPRA Server Directory database SUPRAD.

The conceptual schema contains a set of base views that map onto the
logical data items in the internal schema. These base views define the
integrity rules for the entire database.

The external schema is the view of data as accessed by application
programs, MANTIS programs and SPECTRA* processes. It consists of
a set of derived views that accesses the base views. Derived views
never access the internal schema directly; however, they inherit the
integrity constraints of the conceptual schema.

The RDM acts as insulation between application programs and the
physical structure of data located in the internal schema.

* SPECTRA is not available in OpenVMS AXP environments.

Chapter 1 Introduction to the Relational Data Manager

24 P25-8220-45

The internal schema: Physical Data Description
The internal schema is the lowest level of three schema architecture. It
contains the physical description of data: record length, file layout, file
type (PDM or RMS), location on the disk, recovery method, domain
details, validation criteria, and so on. The Physical Data Manager (PDM)
maintains the internal schema as database descriptions. Refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for information on defining a database description. You must
create an internal schema before you can build a conceptual schema and
an external schema.

An implementation consisting solely of an internal schema, where
applications need to know the precise physical location and attributes of
every piece of data, represents one schema architecture. The following
figure illustrates this concept.

RMS
 File*

REGN
Data Set

PDM
 File

STCK
Data Set

PDM
 File

Index
File

BRAN
Data Set

PROD
Data Set

ORDT
Data Set

PDM
 File

Database
Description

Physical
Files

PDM
 File

Internal
Schema

PDM
 File

ORDR
Data Set

*RMS data sets are only accessed by the RDM, not the PDM

SUPRA Server's three schema architecture

RDM Administration Guide 25

The conceptual schema: base views
The conceptual schema is the middle level of three schema architecture
and contains the logical definition of the database. This logical definition
consists of base views of data, which are relational views of data held in
normalized tables.

The conceptual schema (containing normalized tables) is used to
determine the physical implementation (internal schema) of your
database. After you enter your physical database description, you enter
the conceptual schema. To create your conceptual schema, you define
base views using either DBA functions (refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260) or DBAID (see
“Defining and testing views using DBAID” on page 135). The DBAID
utility offers additional facilities to prototype and test views before relating
them to users and putting them into production. Base views access the
data sets directly and define referential integrity and data security. You
must create a conceptual schema before you can build an external
schema.

An implementation consisting of a database description (internal schema)
and a set of base views (conceptual schema), with applications
accessing data through the base views, represents two schema
architecture. The following figure illustrates this concept.

RMS
 File*

REGN
Data Set

PDM
 File

STCK
Data Set

PDM
 File

Index
File

BRAN
Data Set

PROD
Data Set

ORDT
Data Set

PDM
 File

Database
Description

Physical
Files PDM

 File
PDM
 File

ORDR
Data Set

REGION BRANCH PRODUCT ORDER

Conceptual Schema

*RMS data sets are only accessed by the RDM, not the PDM.

Chapter 1 Introduction to the Relational Data Manager

26 P25-8220-45

The external schema: derived views
The external schema is the top level of three schema architecture and
consists of derived views, which access only other views. The views
accessed by derived views can be either base views or other derived
views, although we recommend that derived views access only base
views to maintain optimum performance.

After defining base views, you create derived views using either DBA
functions (refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260) or DBAID (see “Defining and testing
views using DBAID” on page 135). Using DBAID, you can define your
views, then test them prior to releasing them to users. When creating
views using DBAID, you can define and open a base view and then
define and open a derived view to access that base view without first
saving the base view. Therefore, you can create both base and derived
views in the DBAID test environment. Remember that you cannot save a
derived view before you save the base view(s) it accesses.

Derived views inherit the security and integrity constraints associated with
the base views that they access; however, you can also place more
restrictive or higher levels of security on derived views. Application
programmers, MANTIS programmers, and SPECTRA users access data
through the derived views in the external schema. You must first define
an internal schema and a conceptual schema before you can create an
external schema. Both higher level schemas depend on the lower level
schemas.

Therefore, three schema implementation consists of a database
description (internal schema), a set of base views (conceptual schema),
and a set of derived views (external schema). The following figure
illustrates this concept.

RMS
 File

REGN
Data Set

PDM
 File

STCK
Data Set

PDM
 File

Index
File

BRAN
Data Set

PROD
Data Set

ORDT
Data Set

PDM
 File

Database
Description

Physical
Files PDM

 File
PDM
 File

ORDR
Data Set

REGION BRANCH PRODUCT ORDERBase views

PRODUCTS
IN

BRANCH
Derived
 Views

External Schema

SUPRA Server's three schema architecture

RDM Administration Guide 27

How the RDM fits into the three schema architecture
The RDM uses the data views in the conceptual and external schemas to
extract the physical data residing in the internal schema. RDM acts as
insulation between the physical data and the application programmer; by
presenting the data in views, the programmer need not be concerned for
the physical structure of the data.

The following figure illustrates the Three Schema Architecture:

RMS
 File

REGN
Data Set

PDM
 File

STCK
Data Set

PDM
 File

Index
File

BRAN
Data Set

PROD
Data Set

ORDT
Data Set

PDM
 File

Database
Description

Physical
Files PDM

 File
PDM
 File

ORDR
Data Set

REGION BRANCH PRODUCT ORDERBase views

PRODUCTS
IN

BRANCH
Derived
 Views

External
Schema

Conceptual
Schema

Internal
Schema

RDM

Application Programs

MANTIS SPECTRA

SPECTRA is not available in OpenVMS AXP environments.

Chapter 1 Introduction to the Relational Data Manager

28 P25-8220-45

Views
A view is a logical table of data consisting of logical data items drawn
from one or more physical locations. RDM presents a view in a flat,
two-dimensional, tabular format. Each two-dimensional table consists of
rows and columns (see the following figure) that RDM maps to the
physical database as you specify. Because RDM takes care of the
physical navigation, users can manipulate database information without
knowing its physical location or structure, or the integrity constraints
placed upon it.

DOUG REED

TOM LANGDON

ATHENS INC

Q1

B4

J1

ROW

CUSTOMER
NUMBER

CUSTOMER
NAME

CUSTOMER
CLASS

E40000

F80081

H22233

COLUMN

Views

RDM Administration Guide 29

Two types of views
RDM uses two types of views: base and derived. Base views access the
physical files described in the internal schema. Derived views can
access only other views; base or derived. However, we recommend that
derived views access only base views to maintain optimum performance.

Base views represent the conceptual schema, which is the logical
description of the database. They insulate the derived views in the
external schema from the physical data structures in the internal schema
and provide the base level of security and referential integrity.

The main difference between base and derived views is that base views
access only data sets and derived views access only other views. The
DBA is the only one who ever needs to differentiate between the two
types of views. The application programmer and SPECTRA user see no
difference between a base view and a derived view. Both appear as
tables of data and are known simply as views.

As the DBA, you can tailor views for specific uses or design them for
multipurpose applications. You can allow users to perform powerful data
maintenance actions (INSERT, UPDATE, and DELETE) with a view, or
limit them to read-only access with no maintenance capabilities.

How views are used
Application programs use views to retrieve, insert, change or remove
rows of data. By designing your business rules into your views, you have
full control over how the RDML verbs GET, INSERT, UPDATE, and
DELETE perform.

Application programmers use views by incorporating RDML statements
into their programs. Refer to the SUPRA Server PDM Programming
Guide (UNIX & VMS), P25-0240, for details on how to use RDML
statements in application programs.

MANTIS programmers identify views with the VIEW statement. Then
they use the GET, INSERT, DELETE, and UPDATE statements to
access the data. Refer to your MANTIS documentation for additional
details.

End users in OpenVMS VAX environments access views directly through
SPECTRA, a relational query, update, and reporting tool.

Chapter 1 Introduction to the Relational Data Manager

30 P25-8220-45

User views
You do not need to define views to suit every possible need;
programmers and SPECTRA users can subset views to suit their
purposes. Such a subset is called a user view and can consist of
columns from a single view or columns from multiple views. The user
view can reorder the columns by specifying the column names in the
order desired. By allowing end users and programmers to create their
own user views, you can reduce the amount of administration and view
design you need to do.

The following figure illustrates how different users could subset and
reorder a view. Each user accesses the BRANCH-STOCK derived view
that contains five columns. The SPECTRA user uses the entire view in
the same sequence as specified in the View Definition. The MANTIS
application uses only part of the available data, and also reorders the
columns. The application program uses all the columns, but reorders
them.

BRANCH-NUMBER
BRANCH-NAME
STOCK-PRODUCT
STOCK-QUANTITY

STOCK-YEAR-TO-DATE-SALES
STOCK-PRODUCT
BRANCH-NAME
STOCK-QUANTITY
BRANCH-NUMBER

STOCK-PRODUCT
STOCK-YEAR-TO-DATE-SALES
STOCK-QUANTITY
BRANCH-NUMBER
BRANCH-NAME

SPECTRA
Process

MANTIS
Program

FORTRAN,
BASIC, or
COBOL RDML
Application

BRANCH-STOCK

KEY BRANCH-NUMBER
 BRANCH-NAME
 STOCK-PRODUCT
 STOCK-QUANTITY
 STOCK-YEAR-TO-DATE-SALES

ACCESS BRANCH
 WHERE BRANCH-NUMBER = BRANCH-NUMBER
ACCESS STOCK
 WHERE STOCK-BRANCH = BRANCH-NUMBER

RDM reports

RDM Administration Guide 31

RDM reports
The implementation of three schema architecture can generate long
connections between entities. The following figure illustrates such a
connection. In this illustration, the AREA-CODE column in derived view
REGION-AREA-CODES maps to the REGION-NUMBER column in base
view REGION. The REGION-NUMBER column in turn maps to the
REGION-NUMBER logical data item, which is connected to the physical
data item REGNCTRL in the REGN RMS Data Set. The relationship is
straightforward, but long.

Derived View
REGION-AREA-CODES

KEY AREA-CODE = REGION-NUMBER
 REGION-NAME
ACCESS REGION
 WHERE REGION-NUMBER = AREA-CODE

contains

contains

contains

Column
AREA-CODE

Column
REGION-NUMBER

Physical Data Item
REGNCTRL

maps to

maps to

Base View
REGION

KEY REGION-NUMBER=REGION-ID
 REGION-NAME
ACCESS REGN
 WHERE REGION-ID = REGION-NUMBER
 ALLOW ALL

RMS Data Set
REGN

Physical Logical
Data Item Data Item

REGNCTRL = REGION-ID
REGNNAME = REGION-NAME
REGNLKIN (linkpath to ORDT)

Logical Data Item
REGION-ID

is connected to

Chapter 1 Introduction to the Relational Data Manager

32 P25-8220-45

RDM provides a comprehensive suite of reports that clarify these
relationships and warn you of the lower or higher level impact of any
proposed changes. These RDM reports follow the complex relationships
between the physical data items, logical data items and columns, and the
connections and interdependencies between base views and different
levels of derived views. You can choose between the DBA and
Application programmer reports, logical data item and physical data item
cross reference reports, and validation table and domain usage reports.
You can either select the scope of each report to encompass all
databases, views, data sets, domains, and validation tables on the
SUPRA Server Directory, or you can specify which entity or combination
of entities you want to report on. See “Generating RDM reports” on
page 261 and “DBA report format description” on page 280 for further
information on the RDM reports.

RDM security

RDM Administration Guide 33

RDM security
RDM controls security in two ways:

♦ View ACCESS Definitions

♦ User-to-view Relationships

The ACCESS definition of a view is described in “Access definitions” on
page 50.

The user-to-view relationship defines which views a SUPRA Server user
name is authorized to access (refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for details). You relate
both base and derived views to users through DBA, DBAID or by using a
Global View file.

Chapter 1 Introduction to the Relational Data Manager

34 P25-8220-45

Example database
Appendix C on page 305 provides an example database called EXAMPL,
which includes descriptions of the relations in the internal schema, the
base views in the external schema and the derived views in the
conceptual schema.

All the examples in this manual are based on the EXAMPL database
listed in “Example database” on page 305.

RDM Administration Guide 35

2
Parts of a view

Views provide great flexibility for accessing your data. When you create
a view, you must specify:

♦ A column definition to identify the fields that are included in the view.

♦ An access definition to specify how RDM accesses the data.

You use either SUPRA DBA or the DBAID utility to define your views.
The difference is that DBAID allows you to test your views before putting
them into production; SUPRA DBA does not. However, note that views
defined with DBAID that refer to physical data items in the column
definition cannot be saved to the SUPRA Server Directory database
SUPRAD.

Before actually defining your views, it is important to understand what
makes up a view. This chapter describes the column and access
definition requirements and considerations.

Chapter 2 Parts of a view

36 P25-8220-45

Column definitions
The column definition describes each logical data item in the view and its
characteristics. The column definition must precede the access
definition. You enter the name of each logical data item to be included in
a view and an equivalent column name, if required. If you do not specify
a column name, RDM uses the logical data item name as the column
name.

Each column definition can be associated with one or more logical data
items. Each logical data item has a one-to-one correspondence to a
physical data item.

When you define a view using DBAID (see “Defining and testing views
using DBAID” on page 135), specify the column and access definitions as
lines of text, each preceded by a line number. When you define a view
using DBA Functions (refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for details on logical data
items), specify the column definition through the screen-based EDIT/EDT
interface. When defining a view through DBA, you do not need to specify
each line number as you do through DBAID. You can open and save
views through DBA as you can through DBAID, however, you cannot test
them through DBA.

Any view defined on the SUPRA Server Directory can be used by DBAID.
However, views defined within DBAID that refer to physical data items in
the column definition, rather than logical data items, cannot be saved on
the SUPRA Server Directory. (DBAID allows definition and testing of
views that refer to physical data items for compatibility with other
platforms.)

Column definitions

RDM Administration Guide 37

Column definition requirements for base views:

[]
[][] [][]

[] []
[][] [][]

KEY
REQ
FKEY
NONUNIQUE KEY

 =

= = ... = =

UNIQUE CONST =
= ... = =

2 n

2 n

=

column - name logical - data - item
logical - data - item logical - data - item

column - name logical - data - item
 = logical - data - item logical - data - item
 constant

The column definition requirements for derived views:

[]
[][]

[][]

[] []
[][]

[][]

KEY
REQ
NONUNIQUE KEY

 =

 ... = =

 CONST =
=

 ... = =

n

2

n

=

column - name source - column - n ame

source - column - name

column - name source - column - name
 = source - column - name

source - column - name

= =source-column-name

 constant

2

UNIQUE

Chapter 2 Parts of a view

38 P25-8220-45

KEY

Description Optional. Indicates that the column is required in the view, is used as a
logical key, and forms a unique key in combination with other unique
keys.

Considerations

♦ KEY causes RDM to disregard rows with missing, null, or invalid
occurrences of the KEY columns because a key column is required
(see REQ description).

♦ You can specify a maximum of nine KEY and NON-UNIQUE KEY
columns in a view.

Considerations for base views

♦ KEY causes direct reads to occur for a column when a value is given
in GET, and the column maps to a physical key such as GET USING
in DBAID.

♦ KEY causes a sequential search of data sets for a column when a
value is given in GET, and the column is not a physical key such as
GET USING.

♦ If the view is normalized, any one combination of unique key values
will appear only once in a view.

♦ If the logical key is also a secondary key that allows duplicates, there
is no point defining it as a unique key in the view.

Column definitions

RDM Administration Guide 39

REQ

Description Optional. Indicates the column is required when processing this view.

Considerations

♦ Required columns restrict the number of occurrences in the view.
Valid rows in a base view must have an occurrence of the required
column's physical record and, in the case of packed, numeric, or
floating-point columns, must contain a valid non-null value for the
required column.

♦ The REQ option affects the RDML commands in the following ways:

- GET. All required (REQ) columns must be present, valid, and
non-null, or RDM will return NOT FOUND on direct GETs. For a
sequential (sweeping) GET, RDM skips the row.

When subsetting base views (making user views), if the
programmer specifies a column list by using INCLUDE, one or
more required columns can be omitted. However, the row is
retrieved only if all required columns in that row are present.

 For more information on the INCLUDE statement, refer to the
SUPRA Server PDM Programming Guide (UNIX & VMS),
P25-0240.

When using a user view based on a derived view, if a required
column is not included in a user view, the required column must
still be present, but is not returned to the program.

- INSERT or UPDATE. All required columns must be present,
valid, and non-If a required column is missing from a user view of
a base view, RDM returns an ASI of DATA. If a required column
is not included in a user view of a derived view, RDM returns a
status of FAIL.

- DELETE. No effect.

Chapter 2 Parts of a view

40 P25-8220-45

FKEY

Restriction This parameter is for base views only.

Description Optional. Indicates that this column may contain a null foreign key and is
not required.

Consideration FKEY is used to enforce referential integrity in base views. It allows you
to define a foreign key that may contain a null value. For the foreign key
to support null values, use this syntax:
REQ column-name = foreign-key = primary-key

becomes
FKEY column-name = foreign-key = primary-key

if you want the foreign key to support null values.

NON-UNIQUE KEY

Description Optional. Indicates this column is required in the view and forms a
non-unique logical key in combination with other unique or non-unique
logical keys.

Considerations

♦ It causes direct reads for a column when a value is supplied on the
GET, and the column is a physical key.

♦ It causes a sequential search (sweep) of files (in base views) or base
views (in derived views) for a column when a value is supplied in the
GET and the column is not a physical key.

♦ It causes the RDML processor to disregard rows with null or invalid
occurrences of the KEY columns because a key column is required
(see REQ description).

♦ It enables you to specify a value for the view logical key when
selecting a row without requiring a unique occurrence of the key
column.

♦ You can specify a maximum of nine KEY and NON-UNIQUE KEY
columns.

Column definitions

RDM Administration Guide 41

[UNIQUE] CONST

Description Optional. Indicates that the column is required in the view, and the value
of the column must be equal to the given constant for the row to qualify.
The value of the constant is specified as part of the column description
(=constant).

Default NON-UNIQUE unless you specify UNIQUE before CONST.

Considerations

♦ CONST must be specified if a constant is supplied.

♦ The value of the column must equal the constant for the row to
qualify.

♦ All CONST columns are part of the logical key for the view.

♦ CONST columns are not returned in the view.

♦ Because CONST columns are not returned in the view, they cannot
be used as a value when selecting a row (specifying values for a
GET will map those values to KEY and NON-UNIQUE KEY columns,
skipping any CONST columns. See “Keyed access to data” on
page 83 for more information.

Chapter 2 Parts of a view

42 P25-8220-45

column-name=

Restriction This parameter is for base views only.

Description Optional. In base views, assigns a column name to the logical data item.
The column name will then be used by derived views, application
programs, and SPECTRA. In derived views, it assigns another name to
the source column, to be later used by application programs and
SPECTRA.

Format 1–26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

♦ Use this option to assign a column name that will be more descriptive
or meaningful when used in the application.

♦ Column names need only be unique within the view.

♦ If you do not specify a column name, RDM uses the logical data item
name for base views, and the source-column-name in derived views.

♦ You must use a column name when the column name is equal to
multiple logical data item names (base view) or multiple source
column names (derived views). Otherwise, RDM will use the first
name as the column name. For example:

 PRODUCT-CODE = STOCK-PRODUCT = PRODUCT-ID

 (column-name) (logical name (logical name

 for STCKPROD) for PRODCTRL)

Column definitions

RDM Administration Guide 43

logical-data-item

Restriction This parameter is for base views only.

Description Required. Identifies the logical data item that will be associated with the
column being defined.

Format 1–26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

♦ The logical data item definition must already exist on the SUPRA
Server Directory database SUPRAD.

♦ You can use physical data item names instead of logical data item
names when using DBAID to define a test view.

♦ If you use physical data items in the column definition in DBAID, you
will be unable to save the view on the SUPRA Server Directory
database SUPRAD.

♦ If you do not specify a column name, RDM uses the logical data item
name for base views, and the source-column-name in derived views.

Chapter 2 Parts of a view

44 P25-8220-45

[[=]=logical-data-item2]...[[=]=logical-data-itemn]

Restriction This parameter is for base views only.

Description Optional. Specifies one or more logical data items that will map to a
single column in the view (see Examples 3 and 4 at the end of this
section).

Format 1–26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

♦ This is a convenient method of mapping the same value to many
logical data items in the physical database.

♦ If you specify multiple logical data items, you must specify a
column-name or RDM uses the first logical data item name as the
overall column name, which may result in unexpected behavior. See
the description of column name.

♦ If the column is designated as a KEY, REQ, CONST, or NON-
UNIQUE KEY, all logical data items specified will have the same
constraint.

♦ RDM will access the logical data items using the order of the data
sets in the ACCESS statements (see “Access definitions” on
page 50), which does not have to be the same order that the logical
data items are specified on this statement.

♦ When using GET to retrieve a row, the values of the columns in the
view will be those of the last column accessed. The only exception is
if the column is a KEY, CONST, or NON-UNIQUE KEY with the key
value given. In this case, RDM compares each redundant column
with the key value before returning the row.

♦ Logical data items must be from the same domain unless a domain
override is specified. To override normal domain checking, include
an additional equal sign as shown below:

 column-name-a = = logical-name-a = logical-name-b

Column definitions

RDM Administration Guide 45

source-column-name

Restriction This parameter is for base views only.

Description Required. Indicates the name of the base view column being accessed.

Format 1–26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Consideration The column must already exist in the view being accessed.

Chapter 2 Parts of a view

46 P25-8220-45

[[=]=source-column-name2]...[[=]=source-column-namen]

Restriction This parameter is for derived views only.

Description Optional. Specifies one or more base view columns that will map to a
single column in the derived view.

Format 1–26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

♦ This is a convenient method of mapping the same value to many
columns.

♦ If you specify multiple source-column-names, you must specify a
column name. See the description of column name.

♦ If the column is designated as a KEY, REQ, CONST, or NON-
UNIQUE KEY, all column names specified will have the same
constraint.

♦ The columns are accessed according to the order the base views are
specified in the ACCESS statements (see “Access definitions” on
page 50) which does not have to be the same order that the source
column names are specified in this statement.

♦ When using GET to retrieve a row, the values of the columns in the
view will be those of the last column accessed. The only exception is
if the column is a KEY, CONST, or NON-UNIQUE KEY with the key
value given. In this case, RDM compares each redundant column
with the key value before returning the row.

♦ The columns must be from the same domain unless a domain
override is specified. To override normal domain checking, include
an additional equal sign as shown below:

 REQ REGION-NUMBER = = BRANCH-REGION = REGION-NUMBER

(column name) (source column
name from the
base view
BRANCH)

(source column
name from the
base view
REGION)

Column definitions

RDM Administration Guide 47

=constant

Description Required with CONST. Specifies the value to be assigned as a constant
for this column.

Format You can specify the value as:

♦ X followed by hexadecimal digits enclosed in single quotes;
X'nnnnnn'

♦ Numeric characters (binary, packed, numeric, or floating point);
nnnnnnnnnn

♦ Alphabetic characters enclosed in single quotes; 'cccccc'

Considerations

♦ The length of the value depends on the length of the column being
defined.

♦ If the view is to be saved on the Directory, the length, including
quotes, must not exceed 24 characters.

Chapter 2 Parts of a view

48 P25-8220-45

General considerations

♦ Any columns defined as KEY, REQ, CONST, or NON-UNIQUE KEY
are required columns for the view. See the description of REQ on a
column definition.

♦ More than one column in a row can be a logical key; however, the
keys are treated as a compound key for that row.

♦ In a base view, if a related data set contains both a key column and a
non-unique key column, the PDM processes the data set as if both
were non-unique keys. A non-unique key makes the combination of
keys non-unique.

♦ In a derived view, if a view contains two columns and one is declared
a key and the other a non-unique key, the view will be processed as if
both were non-unique keys. This is because a non-unique key
makes the entire combination of keys non-unique.

♦ Column definition statements must precede the access definition
statements.

♦ Column definition statements do not have to be in any particular
order and need not correspond to the access path specified in the
access definitions.

♦ A constant value must pass any validity checking required and
cannot be the same as the null value. See “Null values” on page 98
for a description of null values.

Examples

♦ The column definition for this view indicates a stock-product row that
may have multiple product values for each branch.

 PRODUCTS-IN-BRANCH

 0005 KEY BRANCH-NUMBER = CUSTOMER-BRANCH
 0010 NON-UNIQUE KEY PRODUCT-CODE = STOCK-PRODUCT
 0015 DESCRIPTION = PRODUCT-DESCRIPTION

♦ This view returns data about branches in Region Number 111:
 REGION-111-INFO
 0005 KEY BRANCH-NUMBER
 0010 CONST REGION-NUMBER=BRANCH-REGION=111
 0020 BRANCH-NAME
 0025 BRNCH-CITY
 0030 BRANCH-STATE

Column definitions

RDM Administration Guide 49

♦ The following example uses multiple fields (logical data items for
base views; source column names for derived views) to define the
column.

 BRANCH-NUMBER = BRANCH-ID = STOCK-BRANCH = CUSTOMER-BRANCH

- With a GET, the value returned in BRANCH-NUMBER depends
on which column (BRANCH-ID, STOCK-BRANCH, or
CUSTOMER-BRANCH) is accessed last. RDM does not
guarantee that these values are equal in this case.

- An INSERT of a value into BRANCH-NUMBER may insert the
same value into BRANCH-ID in BRAN, STOCK-BRANCH in
STOCK, and CUSTOMER-BRANCH in CUSTOMER on the
physical database. See “View design considerations” on
page 73.

- With an UPDATE, a change in BRANCH-ID will update
BRANCH-NUMBER, STOCK-BRANCH, and CUSTOMER-
BRANCH.

♦ The following example uses multiple fields (logical data items or
source column names) to define the column as a logical key.

 KEY BRANCH-NUMBER = BRANCH-ID = STOCK-BRANCH = CUSTOMER-BRANCH

This example is for explanation only. Because the fields are physical
keys, an UPDATE actually would not be allowed.

 All three columns will be treated as keys:

- With a GET, you will retrieve only those rows that have
BRANCH-ID, STOCK-BRANCH, and CUSTOMER-BRANCH
equal to the value given for BRANCH-NUMBER in the USING
phrase. If no key value is supplied on the GET command, RDM
does not guarantee that these values are equal as above.

- An INSERT of a value into BRANCH-NUMBER may insert the
same value into all three columns (BRANCH-ID, STOCK-
BRANCH, and CUSTOMER-BRANCH).

Chapter 2 Parts of a view

50 P25-8220-45

Access definitions
Following the column definitions in the view are the ACCESS statements.
These statements describe the navigation RDM uses to find data in the
PDM data sets or through the base views. The rest of this section
describes the format of the ACCESS statements for both base and
derived views.

For a discussion of important considerations in defining the ACCESS
statements, see “View design considerations” on page 73.

In base views the access definition tells RDM how to navigate from one
physical record to the next. Physical records can be in the same data
set, or in a different data set.

In derived views the access definition describes how to navigate from
view to view, how to access base and derived views, and the
relationships between the views accessed. Different relationships
between physical records determine how RDM navigates from one to the
other; an inappropriate navigation technique degrades the overall
efficiency of your applications. See “Navigational constraints and
boundary conditions” on page 78 for an explanation of database
navigation.

The access definition defines the physical navigation of the database and
the maintenance operations allowed through this view. You may enter
the optional clauses in any order. However, the order of the ACCESS
statements as a whole is important because it controls the order in which
the data sets are accessed.

Access definitions

RDM Administration Guide 51

You can use the ACCESS statement syntax to specify precisely which
access method RDM should use. Alternatively, you can use a
generalized form of the ACCESS statement, and RDM selects the
optimum access strategy according to data set type. Both forms of the
syntax are presented here:

♦ The first syntax format shows the generalized form of the syntax for
base views that consists of an ACCESS statement and the WHERE
clause.

♦ The second syntax format shows how the specific form of the
ACCESS statement for base views varies depending on the data set
type and access method desired.

♦ The third syntax format shows the generalized ACCESS syntax for
derived views.

♦ The fourth syntax format shows RMS data set ACCESS syntax.

Once RDM opens a view and selects the access strategy, it uses that
strategy until the view is released and re-opened. If the view is bound or
global, RDM uses the selected access strategy until the view is rebound
or reglobalized because RDM cannot switch access methods at run time.

For example, if RDM opens a view to access data using a secondary key
and this key subsequently becomes unavailable because it has been
de-populated, de-activated or corrupted, the view no longer works.

For views that are not bound or global, you can build logic in your
program to release and re-open the view should the access method fail.

When you use the generalized form of the access method (see the first
syntax format below), you need to be careful that RDM is not scanning
the files when you do not want it to. RDM status indicators were
designed to provide information about the operation of your views (see
“RDM status indicators” on page 223). Also, the DBAID
SHOW-NAVIGATION command allows you to check that RDM is using
the correct access methods. See “Defining and testing views using
DBAID” on page 135 for information about the DBAID commands STATS
and SHOW-NAVIGATION.

Chapter 2 Parts of a view

52 P25-8220-45

The following shows the generalized ACCESS syntax for base views:

ACCESS (

,
;
:
:
+

) data - set - name record - code record - code

 ONCE
SCAN

 [REVERSE]

 [WHERE column1 =[=] selection-criteria [... AND columnn
 =[=] selection-criteria]]

 [ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]]

 [GIVING column1 [...columnn]]

Access definitions

RDM Administration Guide 53

The following shows the specific ACCESS syntax for base views:

ACCESS (

,
;
:
:
+

) data - set - name record - code record - code

 []

ONCE
SCAN

REVERSE

VIA

linkpath
secondary - key

 [USING item1, item2, ...itemn]

 [WHERE column1 =[=] selection-criteria [... AND columnn
 =[=] selection-criteria]]

 [ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]]

 [GIVING column1 [...columnn]]

 [][]ORDER DESCENDING
FIRST
NEXT
PRIOR
LAST

column - name

The following shows the generalized ACCESS syntax for derived views:

ACCESS view-name

 [USING (item1, item2, ...itemn)]

 [WHERE column1 =[=] selection-criteria [... AND columnn
 =[=] selection-criteria]]

Chapter 2 Parts of a view

54 P25-8220-45

 [GIVING column-1 [...column-n]]

 [ALLOW [ALL] [INS] [DEL] [REP] [UPD]]

The following shows RMS data set ACCESS syntax:

ACCESS data-set-name

 [VIA (rms-key-name)]

 [USING (value1, value2, ... valuen)]

 [ONCE]

 [WHERE column1 =[=] selection-criteria [... AND columnn
 =[=] selection-criteria]]

 [ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]]

 [GIVING column1 [...columnn]]

The following are descriptions for the parameters used in the ACCESS
statements.

ACCESS

Description Required. Identifies the statement as an access definition for the view.

data-set-name

Restriction This parameter is for base views and RMS data sets only.

Description Required. Identifies the data set to be accessed.

Format 4 alphanumeric characters. The first character must be alphabetic.

Consideration The data set description must already exist on the Directory.

Access definitions

RDM Administration Guide 55

view-name

Restriction This parameter is for derived views only.

Description Required. Identifies the base view to be accessed.

Format 1–26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Consideration It must be a valid view defined on the Directory or a virtual view that has
been opened using DBAID.

(

,
;
:
:
+

)record - code record - code

Restriction This parameter is for base views only.

Description Optional. Specifies the record-code(s) to be retrieved from the coded
record related data set specified in data-set-name.

Format Two-character record-code, as previously defined on the SUPRA Server
Directory. The operator has a shorthand method available for specifying
record-code processing. You can use this method either in place of the
FROM clause or in conjunction with it.

Options The valid operators are:

, Specifies an "or" condition. For example: (HD,CM) reads the data
set until either an HD or a CM record is found.

; Specifies embedded many-to-one relationships. For example
(IT;HD) scans the related data set for a row with the HD record-code,
starting from the row with the IT record code.

: Specifies embedded one-to-many relationships. For example
(HD:IT) retrieves many IT coded records for each HD coded record
retrieved.

+ Specifies record-code groups and indicates a one-to-one
relationship. For example: (HD+CM) retrieves only one CM coded
record for each HD coded record retrieved. The specification also
refuses to insert more than one CM coded record for each HD coded
record.

Chapter 2 Parts of a view

56 P25-8220-45

Considerations

♦ You can specify combinations of record-codes and operators. For
example, (HD+SH:IM) indicates that for every Header (HD) there is
an associated Shipment (SH) and many Items (IM).

♦ The "or" operator is not recommended because users of the view
need to know which physical data items are active under which
record-codes. You should inform users if you rearrange the physical
data items in the record-codes.

♦ Record-code specification depends on data set and record
relationships. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for more information
on coded records.

♦ The maximum number of record codes accessible from a single view
is nine.

FROM data-set [(record-code)]

Restriction This parameter is for base views only.

Description Optional. Indicates that the named related data set (following ACCESS)
is to be retrieved from a previously obtained occurrence of the data set
specified in this FROM clause. This overrides the default navigation from
primary to related data sets and allows related-to-related data set
navigation.

Format FROM Specified as shown.

data-set Data set name already existing on the Directory.

(record-code) Two character record-code already on the Directory.
The record-code must be enclosed in parentheses.

Consideration This statement is for related data sets only.

Access definitions

RDM Administration Guide 57

ONCE
SCAN

Restriction This parameter is for base views only.

Description Optional. Specifies how data is to be retrieved from the data set.

Options ONCE. Indicates that only the first related data set row will be retrieved
from the data set. Establishes a one-to-one relationship between the
previous data sets accessed and this one.

 SCAN. Indicates that the chain is to be scanned for the indicated data
based on generalized selection logic and/or record code specifications, if
present. Normally the scan indicates that a one-to-many relationship
exists within the logical data.

ONCE

Description Optional. Indicates that only the first row will be retrieved.

REVERSE

Restriction This parameter is for base views only.

Description Optional. Indicates that the linkpath chain or secondary key is to be read
in reverse order.

Consideration For secondary keys, this parameter is only available when REVERSE
DIRECTIONAL search is enabled.

Chapter 2 Parts of a view

58 P25-8220-45

VIA linkpath
secondary - key

Restriction This parameter is for base views only.

Description Optional. Specifies how RDM should access the data set.

Considerations

♦ The VIA clause is allowed on PDM and RMS data sets.

♦ If you specify a secondary key name (dsetSKnn) on the VIA clause,
you must specify the column that maps onto the physical data item
connected to the secondary key on the USING clause so that RDM
can perform a keyed read.

♦ When you're not using indexing (that is, secondary keys), the VIA
clause applies to related data sets and cannot be used on the first
ACCESS statement in a view.

♦ When you are not using indexing (secondary keys), the VIA clause
applies to related data sets and defaults to a one-to-many
relationship that meets all logical constraints (required columns).

♦ If you are using indexing (secondary keys) RDM will return an OPEN
error if the index is not populated or activated.

♦ The name specified must be a valid linkpath or secondary key
already defined on the Directory database SUPRAD.

Access definitions

RDM Administration Guide 59

VIA (rms-key-name)

Restriction This parameter is for RMS data sets only.

Description Optional. Specifies the index field used to access the RMS data set.
Indexes can be either unique or non-unique. The default analysis of an
alternate index will be to create a one-to-many relationship between the
data set and its parent.

Format The name must be a valid eight character name defined on the SUPRA
Server Directory as an RMS key name.

Considerations

♦ You can use the VIA clause with the USING clause.

♦ You can use the VIA (rms-key-name) clause on the first ACCESS
statement in a view.

♦ Excluding the VIA clause implies use of the first primary key defined
by the KEY statement in the column definition.

♦ The RMS key named in this statement must be defined on the
SUPRA Server Directory where it is related to a particular data item
also defined on the SUPRA Server Directory. This relationship
specifies the displacement within the record of the record key.

♦ The length of the RMS key column is defined separately from (and
may or may not equal) its associated column. By specifying a length
greater than that of the associated column, you can use a compound
key (mapping to more than one contiguous column). Use generic
keys by defining an RMS-key-name length less than that of the
associated column length.

♦ RDM does not support non-contiguous key access to RMS data sets.

Chapter 2 Parts of a view

60 P25-8220-45

USING (item1, item2, ...itemn)

Restriction This parameter is for base views only.

Description Optional. Indicates that the primary data set is to be directly read using
the specified key-column as the control-key.

Format The key-column may be a physical data item, logical data item, column,
constant, or it may be constructed at run time from multiple columns and
constants by using parentheses. For example:
ACCESS PRODUCT USING (COLUMN1, '252', COLUMN2)

Considerations

♦ While not a requirement, it is recommended that you also use these
clauses on base view ACCESS statements.

♦ Compound physical keys are constructed from parts of the physical
key as defined on the SUPRA Server Directory. Each part of the
compound physical key must correspond to the sub-defined part of
the key as specified on the Directory.

♦ If you specified a secondary key name on the VIA clause, the column
you specify on the USING clause must be connected to that
secondary key.

USING (item1, item2, ...itemn)

Restriction This parameter is for derived views only.

Description Optional. Indicates that a logical read using specified value(s) is to be
done on the view, mapping values to logical keys.

Format Each value may be a column or constant.

Access definitions

RDM Administration Guide 61

Considerations

♦ You must use WHERE and/or USING clauses on derived view
ACCESS statements. While not a requirement, it is recommended
that you also use these clauses on base view ACCESS statements.

♦ Values specified must map to the logical keys of the accessed view.
When specifying several values, you can omit values from the
right-hand side of the group of values. Sub-definitions of logical keys
are not allowed. For example, if you had the following base view,
VIEW-A, defined:

 VIEW-A

 KEY COLUMN1

 KEY COLUMN2

 KEY COLUMN3

 the following derived view, accessing VIEW-A, is valid:
 VIEW-B

 KEY COLUMN-A = COLUMN1

 KEY COLUMN-B = COLUMN2

 KEY COLUMN-C = COLUMN3

 ACCESS VIEW-A

 USING (COLUMN-A, COLUMN-B)

♦ However, the following view, VIEW-C, is not valid because values
were omitted, and they do not map to logical keys, from left to right:

 VIEW-C

 KEY COLUMN-A = COLUMN1

 KEY COLUMN-B = COLUMN2

 KEY COLUMN-C = COLUMN3

 ACCESS VIEW-A

 USING (COLUMN-A,,COLUMN-B)

♦ You could correct VIEW-C using either of the following:
 WHERE (COLUMN1 = COLUMN-A) AND (COLUMN3 = COLUMN-B)

 or
 USING (COLUMN-A) WHERE (COLUMN3 = COLUMN-B)

♦ If the view that you are accessing has only one logical key, you can
omit the parentheses.

Chapter 2 Parts of a view

62 P25-8220-45

USING (item1, item2, ...itemn)

Restriction This parameter is for RMS data sets only.

Description Required (except on the first ACCESS statement). Directly reads the
RMS indexed sequential data set using the specified RMS key as the
control-key.

Format The key-column can be a logical data item, physical data item, column or
constant, or it can be constructed at run time from multiple columns and
constants by using parentheses. For example:
ACCESS SAMPLE USING (CUSTOMER-NUMBER,'252',ORDER-PRODUCT-CODE)

Considerations

♦ You can use the USING clause with the VIA clause for RMS data
sets. In this case, the key field is the alternate key rather than the
BASE key.

♦ RDM constructs compound physical keys from parts of the physical
key. Each part of the compound physical key must map to the
sub-defined part the key as specified on the Directory.

♦ If the Directory definition of the physical key field is
 01 SAMPCTRL 15

 02 SAMPCSTN 05

 02 SAMPORIX 04

 02 SAMPPRIX 06

 03 SAMPPRD1 02

 03 SAMPPRD2 04

 you can specify the following compound key definitions:
 USING ORDRCTRL

 USING (SAMPCSTN, SAMPORIX, SAMPPRIX)

 USING (SAMPCSTN, SAMPORIX, (SAMPPRD1, SAMPPRD2))

Access definitions

RDM Administration Guide 63

♦ You can force a generic read at RDM level by leaving columns out of
the USING clause for a compound key. You can omit columns from
the right only, but those column names you supply must be the same
length as the columns in the sub-definition of the physical key. Using
the previous example, you can specify a compound key as follows:

 USING (SAMPCSTN, SAMPORIX)

♦ Only the first two parts of the compound key are supplied to force a
generic read. You can use generic reads only from within RDM
based on the logical keys and the USING clauses in the RDM
ACCESS statements. Application programmers cannot specify the
number of characters in any column used for a generic read. You
must supply the partial key used for the generic read in parentheses,
even if you use only one column.

♦ You can use the USING clause to establish a one-to-many
relationship between multiple RMS data sets on RMS data sets and
PDM data sets.

Chapter 2 Parts of a view

64 P25-8220-45

WHERE column1 =[=] selection criteria [... AND columnn =[=] selection-criteria]

Description Optional. The WHERE clause, used with the USING clause, provides
additional selection criteria (specified access). If you use the WHERE
clause without the USING clause, RDM selects the optimum access
strategy (generalized access).

For base views, the optimum access strategy for PDM data sets is
chosen in the following manner:

 Primary Related RMS
1st Choice Control key Linkpath Control key
2nd Choice Secondary key Secondary key Alternate key
3rd Choice Sequential scan Sequential scan Sequential scan

For RMS data sets, when you use the WHERE clause without the USING
clause, RDM selects the optimum access strategy as follows:

♦ Initially, RDM tries to map to the full control key value.

♦ If no match, RDM tries to map to an alternate key on the data set.

♦ If there is no match, RDM scans the data set.

Format WHERE Specified as shown.

column1-n For base views and RMS data sets, column1 must map
to a data item in the data set.

 For derived views it must be a column in the base view
named in the ACCESS statement.

=[=] Specifies an equal comparison between the column and
the value. You must use the double equals = = (domain
override) if both column1 and value are connected to
different domains. If column1 and value are connected to
the same domain, or if only one is connected to a
domain, you need only enter the single equals.

selection criteria Specifies the value that column1-n must match. In a base
view it may be a physical data item (only in a virtual
DBAID testing view), logical data item, column, or
constant. In a derived view it can be a column from a
previously accessed view (not necessarily a column in
this view) or a constant.

AND Optional. Allows you to specify additional qualifications
for the ACCESS statement.

Access definitions

RDM Administration Guide 65

Considerations

♦ You must use the WHERE and/or the USING clause when defining
the ACCESS statements. While not a requirement, it is
recommended that you use these clauses on the first ACCESS
statement in a view.

♦ Column1 and selection criteria must be the same length.

♦ Use the VIA or USING clause to force alternate index or linkpath
selection in base views.

♦ Use RDM statistics to measure performance of the derived view.

♦ Use of the WHERE clause without the USING clause is called
generalized access. Generalized access allows RDM to select the
most efficient method of retrieving data.

♦ You only specify the domain override (= =) once, between the first
and second columns.

♦ Secondary keys must be listed in the view in the same order as they
are found in the physical file.

Chapter 2 Parts of a view

66 P25-8220-45

ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]

Description Optional. Specifies which physical actions are allowed.

Format Any combination of options is valid, for example:

 ALLOW INSERT DELETE Allows inserts and deletes but not updates.

 ALLOW UPDATE Allows updates but not inserts and deletes.

Options SHARED Allow shared update on data items in a data set. Does
not check "C" ASI status. Not for derived views.

ALL Allow all forms of database modification.

INS Allow row insertions on the database.

DEL Allow row deletions from the database.

REP Allow row replacements on the database.

UPD Same as REP.

Considerations

♦ You can use the ALLOW parameter on as many ACCESS
statements as required.

♦ If you omit this parameter, the data set is restricted to read-only
processing.

♦ These options relate to physical I/O on the data set. They do not
relate to the application program's Relational Data Manipulation
Language (RDML).

♦ Using SHARED has no impact on the INSERT option. However,
using SHARED causes RDM to skip the column comparison usually
done by the automatic record holding facility before deletion and
replacement of rows.

♦ For derived views the ALLOW clause on this ACCESS statement
may not override any constraints imposed by the base or derived
view that you are accessing, but it may further restrict the allowed
actions.

Access definitions

RDM Administration Guide 67

GIVING column1 [...columnn]

Description Optional. Overrides normal data movement. The data movement is
physical data item to column in base views, and base column to derived
column in derived views.

Format The keyword GIVING followed by zero or more column names as defined
on the column definition.

Considerations

♦ All columns that can be filled by a particular ACCESS statement will
be filled unless a GIVING clause restricts this process. Columns not
filled can be filled by later ACCESS statements.

 If you omit this clause in a derived view, all columns derived from
columns in the accessed base view that have not been supplied by
some previous ACCESS statement are filled with values using this
ACCESS statement.

♦ If you omit column names on the GIVING parameter, no column
values are obtained by accessing this data set or base view. The
data set or base view will be used for navigation only.

♦ Using this clause lets you access a data set or base view more than
once and retrieve only selected columns each time.

[][]ORDER DESCENDING
FIRST
NEXT
PRIOR
LAST

column - name

Restriction This parameter is for base views only.

Description Optional. Indicates that a predetermined ordering criterion applies to the
related data set named in the ACCESS statement.

Default If you specify the ORDER clause, ordering defaults to ascending unless
you specify descending. If you do not specify ordering in the ACCESS
statement, the application program can use the
FIRST/NEXT/PRIOR/LAST option on INSERT RDML to control ordering
of the physical insertion of rows. However, this practice is not
recommended.

Format The column name must be a logical data item defined in the view.

Chapter 2 Parts of a view

68 P25-8220-45

Considerations
♦ It is more efficient to use secondary keys to retrieve non-key columns

in order than to use the ORDER clause.

♦ You cannot use the ORDER clause without the VIA clause.

♦ DBA unload/reload may be difficult or impossible for ordered data
sets.

♦ Use the ORDER clause to retrieve rows; you must also use the
ORDER clause to insert rows. If you do not insert rows in order,
RDM will store them in logical sequence according to the INSERT
option.

- If the column type is a unique or non-unique key, and you use
the GET USING command to retrieve a row, RDM will return the
message OCCURRENCE NOT FOUND when it encounters the
first row that is out of sequence. The row you are searching for
may exist.

- If the column is a unique or non-unique key, and you use the
GET command without the USING clause to retrieve a row, RDM
will ignore the ORDER clause and retrieve the rows in the order
in which it inserted them.

- If the column is not a key, RDM will ignore the ORDER clause
and retrieve the rows in the order in which it inserted them.

♦ For record-codes, the linkpath and column used for ordering can be
changed from ACCESS statement to ACCESS statement. Ordering
information is used for the GET USING and INSERT functions.

♦ For INSERT, the specified ordering criterion is always used. The
chain is entered on the basis of the ordering criterion, and the row is
inserted at that position, regardless of any ordering keyword in the
RDML statement. When inserting a row, the column in the ORDER
clause is required (see definition of REQ in “Column definitions” on
page 36).

♦ The ORDER clause makes two levels of positioning available. If a
column is supplied in the ORDER clause, positioning of
FIRST/NEXT/LAST/PRIOR applies only to multiple occurrences of
the value for that column. If no column is supplied in the ORDER
clause, positioning FIRST/NEXT/LAST/PRIOR applies to the entire
chain for that data set. In both cases, the ORDER clause overrides
FIRST/NEXT/LAST/PRIOR used with the RDML INSERT command.

Access definitions

RDM Administration Guide 69

♦ If the row is currently not positioned in the sequence of ordered
columns, the NEXT function acts as LAST, and the PRIOR function
acts as FIRST (placing it at the start of the sequence of ordered
columns).

♦ The position on the linkpath is also affected by the REVERSE option
because this accesses the linkpaths of related data sets in the
reverse direction.

Examples The following examples give column and access definitions for the
database shown in the following illustration:

CUSTLKCO (HD)
ORNMLKCO (HD& IT) ALL

INVTLKCO (IT)

ORNM

INVT

CUST

CORD

Primary

Primary

Related

Primary

♦ This view maintains and reports on basic customer information:

 CUSTOMER VIEW
 KEY CUSTOMER = CUSTOMER-NUMBER

 NAME = CUSTOMER-NAME

 ADDRESS = CUSTOMER-ADDRESS

 CITY = CUSTOMER-CITY

 STATE = CUSTOMER-STATE

 ZIP = CUSTOMER-ZIP

 PHONE = CUSTOMER-PHONE

 ACCESS CUSTOMER

 USING CUSTOMER

 ALLOW ALL

Chapter 2 Parts of a view

70 P25-8220-45

♦ This view maintains and reports on basic ITEM information:

 ITEMS VIEW
 KEY ITEM = ITEM-CODE

 ITEM-DESCRIPTION

 ITEM-COST

 ITEM-PRICE

 ITEM-ON-HAND

 ACCESS INVT

 USING ITEM-CODE

 ALLOW ALL

♦ This view allows the addition, modification and deletion of customer
orders and the items included in the order:

 ORDERS VIEW
 KEY ORDER-NUMBER = ORNM-ORDER-NUMBER

 CUSTOMER = CORD-CUSTOMER-NUMBER

 AMOUNT = CORD-ORDER-TOTAL

 ORDER-DATE = CORD-ORDER-DATE

 SHIP-DATE = CORD-SHIP-DATE

 KEY ITEM-NUMBER = CORD-ITEM-NUMBER

 ITEM-QUANTITY = CORD-ITEM-QUANTITY

 ITEM-PRICE = CORD-ITEM-PRICE

 ACCESS ORNM

 USING ORDER-NUMBER

 ALLOW ALL

 ACCESS CORD (HD)

 ONCE VIA ORNMLKCO

 ALLOW ALL

 ACCESS CORD (IT)

 FROM CORD (HD)

 VIA ORNMLKCO

 ALLOW ALL

 ORDER ITEM-NUMBER

Access definitions

RDM Administration Guide 71

♦ This view provides access to orders on the basis of customers and
would be used for reporting purposes only:

 CUSTOMER-ORDERS VIEW
 KEY CUSTOMER = CUSTOMER-NUMBER

 NAME = CUSTOMER-NAME

 KEY ORDER-NUMBER = CORD-ORDER-NUMBER

 AMOUNT = CORD-ORDER-TOTAL

 KEY ITEM-NUMBER = CORD-ITEM-NO

 ITEM-QUANTITY = CORD-ITEM-QTY

 ITEM-PRICE = CORD-ITEM-PRICE

 ITEM-DESCRIPTION = INVT-ITEM-DESC

 ACCESS CUSTOMER

 USING CUSTOMER

 ACCESS CORD (HD)

 VIA CUSTLKCO

 ACCESS CORD (IT)

 FROM CORD (HD)

 VIA ORNMLKCO

 ORDER ITEM-NUMBER

 ACCESS INVT

 USING ITEM-NUMBER

Chapter 2 Parts of a view

72 P25-8220-45

♦ This view is a variation of Example 3. In this example, new
CUSTOMER and INVT rows are automatically added by RDM if they
are not already present when a new order is added:

 ORDERS VIEW
 KEY ORDER-NUMBER = ORNM-ORDER-NUMBER

 CUSTOMER = CORD-CUSTOMER-NUMBER

 AMOUNT = CORD-ORDER-TOTAL

 ORDER-DATE = CORD-ORDER-DATE

 SHIP-DATE = CORD-SHIP-DATE

 KEY ITEM-NUMBER = CORD-ITEM-NUMBER

 ITEM-QUANTITY = CORD-ITEM-QUANTITY

 ITEM-PRICE = CORD-ITEM-PRICE

 NAME = CUSTOMER-NAME

 ITEM-DESCRIPTION = INVT-DESCRIPTION

 ACCESS ORNM

 USING ORDER-NUMBER

 ALLOW ALL

 ACCESS CORD (HD)

 ONCE VIA ORNMLKCO

 ALLOW ALL

 ACCESS CORD (IT)

 FROM CORD (HD)

 VIA ORNMLKCO

 ALLOW ALL

 ORDER ITEM-NUMBER

 ACCESS CUSTOMER

 USING CUSTOMER

 ALLOW INSERT

 ACCESS INVT

 USING ITEM-NUMBER

 ALLOW INSERT

RDM Administration Guide 73

3
View design considerations

When designing views, it is important that you understand the following:

♦ Row construction (see “How RDM constructs rows” on page 74)

 Knowing how RDM constructs rows will help you define the access
method best suited to your needs.

♦ Keyed access (see “Keyed access to data” on page 83)

 Several types of keys are available for you to tell RDM how to access
the data.

♦ Integrity (see “Domains” on page 96 and “Referential integrity with
RDM” on page 106)

 It is important to know how SUPRA Server handles domain attributes
because RDM uses them to validate data and maintain data integrity
(see “Domains” on page 96).

 Another type of integrity is referential integrity, which ensures that two
pieces of data representing the same fact do not become
inconsistent (see “Referential integrity with RDM” on page 106).

♦ Shared columns (see “Shared column values” on page 126)

 For base views, you can allow shared columns for efficient
processing.

♦ Security (see “View-to-user relationships” on page 128)

 You can control database security on a user-by-user basis by
defining which users can use which views.

Chapter 3 View design considerations

74 P25-8220-45

How RDM constructs rows
As discussed in “Views” on page 28, RDM presents data in a two-
dimensional tabular format. RDM constructs the row based on the view
definition by obtaining data from the data sets or base views named in
the ACCESS statements. Rows created by RDM may be drawn from one
or more data sets or base views and do not necessarily exist as a
physical record anywhere on the database. The following illustration
illustrates how RDM constructs rows:

Logical
data item

1

Logical
data item

2

Logical
data item

3

Logical
data item

4

Logical
data item

5

Logical
data item

6

Data Set
2

Data Set
1

Data Set
3

Data Set
4

Column
1

Column
2

Column
3

Column
4

Column
3

Column
5

Column
6

Base View

Derived View 1

Row

Column
1 Row

Derived View 2

Row

When the RDM processes a GET, INSERT, UPDATE or DELETE
command, it:

♦ Determines whether the view is a base or derived view.

♦ Opens it and all associated base views and data sets.

♦ Sets up the internal data structures for the application.

To the application there is no difference between a base and a derived
view.

How RDM constructs rows

RDM Administration Guide 75

Database penetration
Database penetration is associated with the one-to-one keyed
relationship. You penetrate (or access) the database by using a key
value. At any time, you are pointing to one particular position in the
database. Database penetration does not rely on anything you have
previously done with the database. An example is retrieving a customer
row using a particular customer number as the key.

You select database penetration by performing GET (with or without a
key value), to establish your position within the database. Whether going
from one or many data sets to another, using a key for retrieval implies a
one-to-one keyed relationship from the source to the target.

Another kind of relationship is positional, implying location with relation to
the position of other records instead of key value. For example, when
retrieving records sequentially, getting the next physical record is a
one-to-one positional relationship because the position of the first
physical record finds the next. You do not use a key to get the next
record. After the position is established based on the logical keys, you
perform a positional GET without keys, or another "penetrating" GET with
keys. A GET FIRST or GET LAST is guaranteed to access the
database, while a GET NEXT or GET PRIOR is positional.

Penetration uses a base data set as the starting point, which simply
retrieves the selected record in the data set specified by the first access
definition in the view. From that record, you travel outward in one or
more directions; each time you take a step, you can use that information
to take additional steps. This would resemble a tree structure. However,
navigation could also be circular. For example, you may want to search
for all customers who have an account at a particular branch, regardless
of any other branches they might patronize. The following illustration
shows this circular navigation using some of the data sets described in
the example database in Appendix D on page 305.

Chapter 3 View design considerations

76 P25-8220-45

BRAN
Data Set

ORDR
Data Set

ORDT
Data Set

ORDER-NUMBER

PROD
Data Set

PRODUCT-CODE

BRANCH-NUMBERSTOCK-BRANCH

STOCK
Data Set

DETAIL-
PRODUCT- CODE

How RDM constructs rows

RDM Administration Guide 77

Database sweep
A database sweep involves taking a positional step either forward or
backward. A database sweep occurs only on a one-to-many positional
relationship. Examples of a database sweep are a primary-to-related
data set relationship and a related-to-related data set relationship using
record codes.

Sweeping occurs when you have already penetrated the database, that
is, positioned yourself at a particular row or are accessing the database
for the first time without using a key value (or index). You then move
either forward or backward from your position; you can get either the next
or the previous row. For example, in a logical view consisting of
customer and orders, you first penetrate the database using the customer
number. When you ask to read the first and subsequent orders, you rely
on a database sweep based on positional relationships between the
orders and the customer.

For performance reasons, we recommend that you use an index on a file
instead of allowing database sweeping. For example, in the EXAMPL
database listed in Appendix D on page 305, the order file contains an
index on the customer number to minimize database sweeping.

When you sweep, there is an incremental movement, either forward or
backward. You can sweep a data set without penetrating the database
by starting at either the first or the last physical record (this is also called
scanning).

Chapter 3 View design considerations

78 P25-8220-45

Navigational constraints and boundary conditions
RDM enables you to identify points along the navigation path that must
be reached for the navigation to be valid. Once those points are reached,
you can also specify data items as required, causing navigation to be
unsuccessful if the data item is not found.

Logical keys are always required. Therefore, when accessing a data set
based on a logical key value that is not found, navigation stops. If, during
database penetration, any required data items are not found, RDM
returns a not-found status. However, if attempting a sweep through the
database, RDM skips physical records that do not meet the constraints
as if they do not exist. An example is the CUSTOMER-ORDER view that
only returns rows for customers who have at least one order.

A boundary condition exists when you reach the end of a group of
records. Scanning through a primary data set, the end of the data set is
a boundary (see Example 1). If you are sweeping a related data set
chain (based on a primary data set key), the end of the chain is a
boundary (see Example 2). If, however, you scan the related data set
without using a primary data set key, RDM gets the next primary data set
record and navigates its associated related data set chain (see
Example 3).

Examples two and three use these data sets:

Cincinnati

New England

Atlanta

3345

1526

2221

BRAN STCK PROD

3345

1526

3345

2221

1122 1122

3500

2500

Wigits

How RDM constructs rows

RDM Administration Guide 79

Example 1: Boundary condition of end of primary data set. Using
the CUSTOMER base view (see “Example database” on page 34 for
view contents) your application just needs to scan the customers; none of
the GET statements will include a key value for customer number.
Instead, each GET will retrieve the next record in the file in physical
order. In this case first customer number 111, then 222, then 333 and so
on. The boundary condition is reached when the end of the file is
reached. Note that you can use a secondary key on the customer data
set if you want the information retrieved in a particular order, as has been
done in the CUSTOMER view.

Example 2: Boundary condition for the end of related data set
linkpath chain. Base View: BRANCH-PRODUCTS
KEY BRANCH-NUMBER = BRANCH-ID

KEY PRODUCT-CODE = STOCK-PRODUCT-ID = PRODUCT-ID

 PRODUCT-DESCRIPTION

ACCESS BRAN

 WHERE BRANCH-ID = BRANCH-NUMBER

ACCESS STCK

 WHERE STOCK-BRANCH-ID = BRANCH-ID

ACCESS PROD

 WHERE PRODUCT-ID = STOCK-PRODUCT-ID

This time you need to know all the products stocked in a particular
branch. You do a database penetration by issuing a GET with the branch
number as the key. Each subsequent GET will be a GET NEXT that will
use the STCK related data set linkpath chain (BRANLKST) to get the
order information for each order. The boundary condition is reached
when there are no more products stocked by this branch (the end of the
linkpath chain).

Example 3: Multiple boundary conditions. Using the BRANCH-
PRODUCT view shown in example 2, you now need to get the order
information for all customers. So, your application will scan the BRAN
primary data set sequentially, sweeping the branch number linkpath in
the STCK related data set. When the end of the related chain is reached
for a branch number, the next branch record is read and all related
records for that branch are found, and so on. You reach a boundary
condition when you reach the last related record in the chain and when
you reach the end of the BRAN data set.

Chapter 3 View design considerations

80 P25-8220-45

Processing derived views
Before you can use the RDML commands, GET, INSERT, UPDATE, and
DELETE, the derived view must open the base view. Applications do not
explicitly open a base view; it is opened on first use so that the view's
internal data structure is available. Thus, opening a derived view results
in opening one or more base views.

For example, when you open the PRODUCTS-IN-REGION derived view,
the REGION, BRANCH, STOCK, and PRODUCT base views are also
opened. In combination, these views can affect every data set in your
physical database. After all views are opened, you can process the
RDML commands.

Processing the GET command
When you issue a GET for the BRANCHES-IN-REGION base view, RDM
issues a GET for the REGION base view, which causes a request on the
REGN data set. If this operation returns data for the REGION base view,
a GET is issued for the BRANCH base view. The GET results in a
sweep of the BRAN data set searching for rows with the correct
region-number. The following illustration shows the processing
sequence.

REGION

BRANCHES-IN-REGION

PDM

BRAN
Data Set

REGN
Data Set1st

GET

2nd
GET BRANCH

How RDM constructs rows

RDM Administration Guide 81

Processing the INSERT command
This example uses the PRODUCTS-IN-REGION derived view to insert a
new product into the stock of a branch in a given region.

Derived View: PRODUCTS-IN-REGION

View Text:
KEY REGION-NUMBER

 REGION-NAME

KEY BRANCH-NUMBER

 BRANCH-NAME

KEY STOCK-PRODUCT

 PRODUCT-DESC

ACCESS REGION

 WHERE REGION-NUMBER = REGION-NUMBER

 ALLOW UPDATE DELETE

ACCESS BRANCH

 WHERE BRANCH-REGION = REGION-NUMBER

 ALLOW ALL

ACCESS STOCK

 WHERE STOCK-BRANCH = BRANCH-NUMBER

 AND STOCK-PRODUCT = STOCK-PRODUCT

 ALLOW ALL

ACCESS PRODUCT

 WHERE PRODUCT-CODE = STOCK-PRODUCT

Because ACCESS statements in the REGION and PRODUCT base
views do not allow INSERT, the REGION-NUMBER and
STOCK-PRODUCT values must exist in the database before the
INSERT can succeed. This derived view does not allow for insertion of
new branches and stock into a branch without any restriction. The only
reason to access the PRODUCT base view here is to provide the
PRODUCT-DESC column. The integrity constraint between STOCK and
PRODUCT (no STOCK-PRODUCT number is allowed that is not already
in PRODUCT) is already defined in those base views.

Chapter 3 View design considerations

82 P25-8220-45

Processing the UPDATE command
This view allows you to update existing branch names in a specified
region, and to insert new branches. You cannot modify the region
through this view.

Derived View: BRANCHES-IN-REGION

View Text:
KEY REGION-NUMBER

 REGION-NAME

KEY BRANCH-NUMBER

 BRANCH-NAME

ACCESS REGION

 ONCE
 USING REGION-NUMBER

ACCESS BRANCH
 WHERE BRANCH-REGION = REGION-NUMBER

 ALLOW INSERT UPDATE

Processing the DELETE command
This view keys into the REGN data set using the key REGION-NUMBER
to delete a region. Any branches in the specified region are also deleted;
the ACCESS statement to the BRAN data set has ALLOW DELETE.
However, if any branch in the region contains customers, the entire
delete operation is rejected. Neither the region nor any of its branches
can be deleted if any one branch contains customers. To cascade delete
the customers from the CUST data set, you would need to ALLOW
DELETE on the ACCESS statement for the CUST data set as well.

Derived View: DELETE-REGION-WITH-NO-CUSTOMERS

View Text:
KEY REGION-NUMBER = REGION-ID

REQ BRANCH-NUMBER = BRANCH-ID

ACCESS REGN

 USING REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID = REGION-ID

 ALLOW DELETE

ACCESS CUST

 WHERE CUSTOMER-BRANCH-ID = BRANCH-ID

Keyed access to data

RDM Administration Guide 83

Keyed access to data
From the perspective of RDM, each apparently flat record described by a
view has one or more logical keys. Each data set in the database has
one or more physical keys. The logical key or combination of logical keys
in your view may or may not map to a physical key.

Although it is possible to create a view that has no logical key, for
performance reasons, it is not recommended.

You provide keyed access to data through the view definition. Each data
set in the database can be accessed through a physical key, for example,
customer number or part number. Provided you define a logical key that
maps onto the physical key in the data set, RDM performs a physical
keyed access. This is the most efficient way of accessing data.

If you do not provide keyed access (you either omit the key or define a
logical key that does not map onto the physical key), a serial scan of the
data set or view results. Even if a physical keyed read can be performed,
you can still define a view that limits the data set to sequential access.
The following illustration uses two base views to illustrate keyed and
sequential access.

logical key
maps onto
physical key

physical
key

RMS Data Set
REGN

Base View: REGION-BY-NAME

Base-View: REGION-BY-NUMBER

KEY REGION-ID
 REGION-NAME
ACCESS REGN USING REGION-ID
 ALLOW ALL

 REGION-ID
KEY REGION-NAME
ACCESS REGN
 WHERE REGION-NAME = REGION-NAME
 ALLOW ALL

logical key
maps onto
non-key
physical
data item

Physical Logical
Data Item Data Item

REGNCTRL = REGION-ID
REGNNAME = REGION-NAME

Chapter 3 View design considerations

84 P25-8220-45

Base view REGION-BY-NUMBER has one logical key (KEY
REGION-ID), which it uses as the logical key to the REGN data set
(ACCESS REGN USING REGION-ID). Because this logical key maps
onto the physical key REGNCTRL, RDM performs a keyed-read of the
data set REGN. Physical keyed access provides good performance and
is therefore useful for views that change the database (the RDML
maintenance functions INSERT, UPDATE, and DELETE).

You can also access a data set through a secondary key. This is much
more efficient than a serial scan, but not as efficient as using a physical
control key. Secondary keys are returned in either ascending or
descending order, or both, depending on the direction chosen during
secondary key definition. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for details on how to
define secondary keys.

Base view REGION-BY-NAME has one logical key (KEY
REGION-NAME), which it uses as the logical key to the REGN data set
(ACCESS REGN WHERE REGION-NAME = REGION-NAME). Because
REGION-NAME does not map onto a physical key, RDM performs a
sequential read of the data set REGN, scanning the physical file to locate
the appropriate row. Scanning a data set is the least efficient method of
access.

If, however, you define REGION-NAME as a secondary key in an index,
the ACCESS statement ACCESS REGN WHERE
REGION-NAME=REGION-NAME would cause RDM to use the index to
obtain the data. This is much more efficient than a serial scan. You
define indices and secondary keys during database definition. Refer to
the SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260.

You can define a logical key two ways: (1) Using the keyword KEY (or
NON-UNIQUE KEY) in the column portion of the view definition, or (2)
Defining logical keys as part of the access portion of the view definition.
The keys in the access portion of the view definition determine the
access method to use.

Keyed access to data

RDM Administration Guide 85

In the following example (a derived view of the base view CUSTOMER),
logical keys are placed on both CUSTOMER- NUMBER and
CUSTOMER-NAME by defining the columns with the required KEY.
CUSTOMER-NUMBER is defined as the logical key to the CUST data set
on the ACCESS statement.
KEY CUSTOMER-NUMBER

KEY CUSTOMER-NAME

 CUSTOMER-ADDRESS

 CUSTOMER-STATE

ACCESS CUSTOMER

 WHERE CUSTOMER-NUMBER = CUSTOMER-NUMBER

 ALLOW ALL

Each view can have zero to nine logical keys. Logical keys defined with
the keyword KEY or NON-UNIQUE KEY can be used to supply any
number of these key values for the view. A logical key in a view does not,
by itself, cause RDM to perform a keyed access. A logical key enables
the user to provide a value for the specified field if keyed access is
desired. If you define a logical key that maps to a physical key on the
database file (for example, a control key on a PDM primary data set), and
the user program requests a read using that key, the access will work
very quickly. RDM performs a keyed read of the data set and goes
directly to the requested row. If, however, the user does not provide a
value for that key, RDM performs a sequential read and treats the logical
key as a required field.

Required columns are designated by the REQ option of the column
definition and must be present for RDM to return a row. Imagine an
example of customers and orders where each customer may have zero,
one, or more than one order. If the order number is required,
customer-order rows will be returned only if the customer has at least one
order. If the customer number is required, all customer rows will be
returned, regardless of whether the customer has any orders.

All keys, including logical keys, are always required columns. You can
also assign fixed values or constants to impose constraints on the
program and thus limit the application to retrieve or update selected rows.

You can define four different types of logical keys for a row: unique,
non-unique, constant, and unique constant. You can define logical keys
as unique or non-unique depending on your application requirements and
record organization. However, if the logical key is also a secondary key
that allows duplicates, there is no point defining it as a unique key in the
view. The following sections give more details on these key types as well
as information on designating columns as required or constant.

Chapter 3 View design considerations

86 P25-8220-45

Unique keys
A unique key has one row for each key value. Remember that each row
can ultimately map to one or more data sets. Therefore, using a unique
key with unnormalized views may retrieve more than one row for each
unique key.

When you define a simple or compound unique key (see “Simple unique
keys” on page 86 and “Compound unique keys” on page 87), the
program might not supply all the values. For example, if you define the
customer number and order number as a compound unique key, the
program can retrieve the row using zero, one, or two key values. In this
way, the program can implement a generic read by specifying less than
the total number of logical keys in the view. If the program specifies just
customer number, RDM retrieves all orders for that customer.

If the logical key maps to the physical key of a data set that maintains
uniqueness of the physical key, RDM will let the PDM maintain the
uniqueness. If the column does not map to a unique key, RDM tries to
keep the value unique by rejecting duplicate inserts.

Simple unique keys
Think of a simple unique key as a selection criterion. It provides an equal
comparison between a column and an application-specified value. An
example of a simple unique key is the customer number, as shown in the
following illustration. No two customers for a company should have the
same customer number. Therefore, the key is unique.

CUSTOMER
NUMBER

CUSTOMER
NAME

CUSTOMER
ADDRESS

Simple
Unique Key

CUSTOMER
STATE

CUSTOMER
CITY

Keyed access to data

RDM Administration Guide 87

Compound unique keys
Another type of key is the compound unique key. In this case, more than
one data item can be defined as a key with an "and" connection implied
between the logical keys. An example of the compound unique key is
illustrated in the following illustration.

REGION
NUMBER

REGION
NAME

BRANCH
NUMBER

BRANCH
NAME

AND

Compound
Unique Key

Derived View: BRANCHES-IN-REGION
View Text:
KEY REGION-NUMBER
 REGION-NAME
KEY BRANCH-NUMBER
 BRANCH-NAME
ACCESS REGION
 ONCE
 USING REGION-NUMBER

ACCESS BRANCH
 WHERE BRANCH-REGION = REGION-NUMBER

 ALLOW INSERT UPDATE

If your application includes both logical key values when issuing the GET,
RDM will try to locate the row based on both values. RDM may do direct
database penetration, scan or sweep navigation of the physical files, or
some combination to find the specified row.

The key value of a compound unique key is the combination or
concatenation of the logical key values. RDM keeps this combination
unique. Using the BRANCHES-IN-REGION example, there may be
several branches in a region, but there will be only a single row for the
region number/branch number combination.

Chapter 3 View design considerations

88 P25-8220-45

Non-unique keys
Non-unique keys differ from unique keys because RDM does not
maintain the key value as unique. The column is still required, and the
user can specify a value for the column to select rows. However, a single
key value may return multiple rows. Do not confuse this with a generic
search (see “Generic reads” on page 93), which may also return several
rows for a given key value.

You can build views that have only unique keys, but still return several
rows per unique key combination. This occurs when the unique logical
keys do not uniquely specify a single row. Using the BRANCHES-IN-
REGION view as an example, if you designate only region number as a
unique logical key and the user specifies region number on a GET,
multiple branch rows might be retrieved for each region number.

We recommend that you uniquely identify a single row whenever
possible. It is required for INSERT and UPDATE operations.

With a non-unique key, the rows may be retrieved only sequentially and
not based on a value, which could cause performance problems.

Keyed access to data

RDM Administration Guide 89

Simple non-unique keys
A simple non-unique key is a data item with the value in more than one
row. If you can have more than one row with the same logical key, it is
an unnormalized view and has non-unique keys. An example is a
customer data set with comments about each customer. You neither
date the comments nor supply another key, but you want to retrieve the
comments for each customer. This is a non-unique, unnormalized view
because multiple rows contain the same customer number. You define
the customer number as a single key, and define access to the comment
rows without specifying a key. When the program does its first GET
using a customer number, it retrieves the first comment for that
customer. The next GET retrieves the second comment, and so on. At
the last comment for that customer, RDM finds a boundary condition (see
“Navigational constraints and boundary conditions” on page 78) and
returns a "not found" status.

Compound non-unique keys
A compound non-unique key is an extension of the simple non-unique
key because you define more than one column as the logical key, and at
least one of the logical keys is non-unique. All non-unique keys together
still do not completely describe the row occurrence as unique. You can
still retrieve more than one row with that same compound non-unique
key.

You can define a non-unique key either by omitting a key that would
uniquely define the view, or by explicitly defining a data item as a
non-unique key. The difference is that the user can perform searches
based on the value of a column explicitly defined as a non-unique key.

Chapter 3 View design considerations

90 P25-8220-45

Constant keys
If you do not want the programmer to specify a value for the key in the
application, supply a logical key with a fixed value. Do this either by
entering the keyword CONST in the column definition and assigning it a
literal value or by assigning the value to a logical data item name or
column name in the WHERE clause of the access definition. RDM uses
this value as though the program supplied the value as a key.

A CONST key can be unique or non-unique, depending on what you
specify in your column definition. You can use a unique constant to
prevent duplication of the constant value on insert. Constant values must
pass data validity checking if specified, and cannot be null. A CONST is
always a required column in the view.

You can use a CONST key for value-based security. For example,
assume you want to define a view that retrieves only the customers from
Texas. You could supply a constant of TX to the state field. Then the
program can retrieve and update only Texas customers.

When you designate a column as a constant, RDM does not return the
column value in the row. For example, the user of the view would never
see the state value ‘TX’.

Keyed access to data

RDM Administration Guide 91

Example Derived Views

View Text: CUSTOMERS-IN-TEXAS
KEY CUSTOMER-NUMBER

 CUSTOMER-NAME

 CUSTOMER-ADDRESS

 CUSTOMER-CITY

CONST CUSTOMER-STATE = 'TX'

 CUSTOMER-ZIP-CODE

 CUSTOMER-CLASS

 CUSTOMER-CREDIT-CODE

 CUSTOMER-CREDIT-LIMIT

 CUSTOMER-BRANCH

ACCESS CUSTOMER

 WHERE CUSTOMER-NUMBER = CUSTOMER-NUMBER

or

View Text: CUSTOMERS-IN-TEXAS-2
KEY CUSTOMER-NUMBER

 CUSTOMER-NAME

 CUSTOMER-ADDRESS

 CUSTOMER-CITY

 CUSTOMER-ZIP-CODE

 CUSTOMER-CLASS

 CUSTOMER-CREDIT-CODE

 CUSTOMER-CREDIT-LIMIT

 CUSTOMER-BRANCH

ACCESS CUSTOMER

 WHERE CUSTOMER-NUMBER = CUSTOMER-NUMBER AND CUSTOMER-
STATE = 'TX'

Chapter 3 View design considerations

92 P25-8220-45

Secondary access keys
As described in “Unique keys” on page 86, a unique key may map onto
values found in more than one data set. In practice, this means that you
can obtain a control key value from data-set-1 and use this value to
access data-set-2. Thus, secondary access keys are copies of control
key values found in other data sets. The data set containing the control
key and the data set containing the secondary access key may be
primary or related. It is the order in which you access the data sets that
determines which data set contains the secondary access key.

You cannot modify secondary access keys because the physical key
value for the secondary access key is held on the data set containing the
control key. The PDM allows you to change this value only through the
control key on the parent data set. If you attempt to open a view in which
you allow updates on a data set accessed through a secondary key, RDM
returns this message:
#nnnn DO NOT MODIFY SECONDARY ACCESS KEYS

where nnnn is the line in the view that generated the error.

In other words, if you specify the secondary access key in the column
definition, you cannot insert or update rows on the data set accessed
through that secondary key. To insert or update records on a data set
accessed through a secondary key, omit the secondary key from the
column definition. Alternatively, change the order of data set access.

Note that a secondary access key is different from a secondary key. You
create secondary keys as part of the physical database during database
definition to allow access to a data set via an alternate index.

Keyed access to data

RDM Administration Guide 93

Generic reads
Generic reads enable you to retrieve data using partial values as keys.
You can omit characters from the right, substituting the wildcard
character * (for equal or next match) or = (for equal only match). These
characters are the default wildcard characters; however, you can specify
your own wildcard characters by defining the logical names
CSI_WILD_EN (for equal or next) and CSI_WILD_EQ (for equal only) as
described in the general considerations at the end of this section. Refer
to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for details on defining these logicals.

To illustrate a generic read, assume you are using a view,
CUSTOMER-ORDER, containing the columns ORDER-CUSTOMER-
NUMBER and ORDER-NUMBER where there is a secondary key
associated with CUSTOMER-NUMBER:

Base View: CUSTOMER-ORDER

View Text:
NON-UNIQUE KEY ORDER-CUSTOMER-NUMBER = ORDER-CUST-ID

 ORDER-NUMBER = ORDER-ID

ACCESS ORDR

 WHERE ORDER-CUST-ID = ORDER-CUSTOMER-NUMBER

A series of GETs would return data in the following order:
NAME CITY

------------------------------ -----------------------

ADAMS A ABERDEEN

BROWN D READING

CARSON C ABERDEEN

COX D READING

LOVE C PORTSMOUTH

SMITH Fred SLOUGH

SMITH P LONDON

SMITH SM MAIDENHEAD

SMYTH M SWINDON

Chapter 3 View design considerations

94 P25-8220-45

In this example, we are using the default wildcard characters. The
wildcard (*) specifies an equal or greater than match instructing RDM to
return a row where a key matches the partial key specified. If there is no
key match, RDM will return the next row. RDM always returns a row for
this option until it reaches the end of file boundary condition. Using the
previous example, if you repeatedly issued the following statement:
GET CUSTOMER-ORDER USING C*

you would retrieve rows in the following order:
CARSON C ABERDEEN

COX D READING

LOVE C PORTSMOUTH

SMITH Fred SLOUGH

SMITH P LONDON

SMITH SM MAIDENHEAD

SMYTH M SWINDON

OCCURRENCE NOT FOUND.

When RDM cannot find a row to match the partial key supplied, it returns
rows that do not match until it reaches the end of file boundary condition.

Keyed access to data

RDM Administration Guide 95

General considerations for generic reads

♦ You must access the data set containing the partial key via a
secondary key.

♦ The partial key specified must have a character data type. Generic
read does not work on the other data types supported by RDM.

♦ You can specify your own wildcard characters by defining the
following logical names in any logical name table available to your
process:
$ DEFINE CSI_WILD_EN @

 to use the @ character to specify an equal or next match
$ DEFINE CSI_WILD_EQ #

 and to use the # character to specify an equal only match. You can
substitute your own wildcard characters for @ and #.

♦ The wildcard character must be the rightmost character in the key.
(You can omit parts of the key from the right only.) RDM ignores any
values entered after the wildcard character. For example, the
following two statements are both valid; however, RDM will process
the second statement exactly like the first, ignoring the characters to
the right of the wildcard.
GET view-name USING SM*

GET view-name USING SM*TH

 Both statements retrieve the same rows.

♦ You can use compound generic keys; however, the wildcard
character must still be the rightmost character in the string. For
example, you could access a secondary key with two key parts as
follows:
GET view-name USING 1234 TE=

 However, the following statement is invalid because it includes
characters to the right of the wildcard character.
GET view-name USING 12= TEMP

♦ You can specify values for logical key columns after the generic key,
for example, for an index with one key part and a view with three
logical key columns you could enter:
GET view-name USING SM* 1234 999

Chapter 3 View design considerations

96 P25-8220-45

Domains
Every column in a view eventually maps to a physical data item defined
on the SUPRA Server Directory database SUPRAD. When you define a
data item on the SUPRA Server Directory, you also specify its physical
characteristics such as length and format. You specify additional
characteristics such as a validation option, default value, and null value
when you define a domain and connect it to the data item. RDM checks
the Global View file or the SUPRA Server Directory for these
characteristics when processing RDML requests.

Domain attributes of null value, default value, retrieval validation, and
validation type are especially important in processing views because
RDM uses them to validate the data and maintain data integrity. In
addition, domains ensure that relational joins are made only on columns
of the same type. For instance, it makes no sense to create a join where
SALARY = RETAIL-PRICE

SALARY and RETAIL-PRICE may have the same format and length, so
this join, although meaningless, would be permitted. By assigning each
of these columns to a different domain, you avoid such oversights.

RDM performs some default validation such as checking that packed or
numeric columns contain valid numbers. This check is made after the
check for nulls but before any specified validation is done (see “Null
values” on page 98, “Default values” on page 101, “Validation options” on
page 103, and “Join compatibility” on page 105). RDM returns an ASI of
"V" for columns that fail default validation checks. See “RDM status
indicators” on page 223 for a description of ASIs.

Domains

RDM Administration Guide 97

You define domains and connect them to logical data items through DBA
functions. The following screen illustration illustrates the contents of a
sample domain as they appear during domain creation. You can see that
null and default values, validation options, and validation exits are all
specified through domains.

CINCOM SYSTEMS DOMAIN : REGION

 1 : DOMAIN-NAME :REGION
 2 : DOMAIN-FUNCTION :STRING
 3 : DOMAIN-UNIT :N/A
 4 : DOMAIN-FORMAT :CHARACTER
 5 : DOMAIN-LENGTH :2
 6 : DOMAIN-DECIMALS :0
 7 : DOMAIN-SIGNED :SIGNED
 8 : DOMAIN-NULLS-ALLOWED :NO
 9 : DOMAIN-NULL-VALUE :
10 : DOMAIN-DEFAULT-VALUE :
11 : DOMAIN-RETRIEVAL-VALIDATION :NO
12 : DOMAIN-VALIDATION-TYPE :RANGE
13 : DOMAIN-MINIMUM-VALUE :01
14 : DOMAIN-MAXIMUM-VALUE :99
15 : DOMAIN-VALIDATION-EXIT-NAME :
16 : DOMAIN-STATUS :O.K.

Enter field number (or <PF1> to exit) :

You can use the COLUMN-DEFN DBAID command to report on null,
default, and validation information for each column in a view. In addition,
it reports on the physical characteristics of the column, such as length
and format. See “Defining and testing views using DBAID” on page 135
for more information on DBAID commands. Refer to the SUPRA Server
PDM Database Administration Guide (UNIX & VMS), P25-2260, for more
information on creating domains.

When DOMAIN RETRIEVAL validation is enabled, RDM validates the
column for each retrieval (GET). Columns that fail the validation criteria
are flagged with an invalid ASI. Required columns must be valid and
non-null, or a row is not returned. However, data is returned for non-
required columns with an invalid ASI.

The following sections discuss the components of null and domain
support:

♦ Null values

♦ Default validation

♦ Validation options

Chapter 3 View design considerations

98 P25-8220-45

Null values
The SUPRA Server Directory supports null values for all data types. You
can specify in the domain whether a physical data item can be null and, if
so, which value that data item should contain to represent a null. A null
value represents missing or inapplicable information, and is independent
of data type. Null values are distinct from blanks, zeros, the empty
character string, or any other value, although you can use these values
as the null string if you wish. To allow null values for a given logical data
item, you connect the data item to the appropriate domain through DBA
Functions (refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260).

For example, assume that you are organizing delivery routes. You
specify the date, route, vehicle, time of departure, and driver. However,
because you do not know which driver will be available for the dockside
route and the city-south route, you specify the null value for both. The
null value could be "Not yet allocated."

Inserting the null value for driver does not mean that nothing will be
delivered on the dockside and city-south routes. Nor does it mean that
the same driver will deliver on both routes. The null value "Not yet
allocated" indicates that you do not know which driver will deliver. The
necessary information is missing.

Note that the data type of the null value may differ from the data type of
the column (shown in the DOMAIN-FORMAT field of the domain using
the DBA utility). However the length of the null value is limited by the
length of the field, regardless of data type.

Null values are optional; you define them in the domain details, which
may then be connected to a data item through DBA. Refer to the SUPRA
Server PDM Database Administration Guide (UNIX & VMS), P25-2260,
for a description of how to specify a null value for a data item during
domain definition.

For numeric or packed numeric data items without domains (for instance,
those migrated from a previous release or newly created and not yet
connected to a domain), RDM sets the NULL flag to "Y" and sets the null
value to blanks. The NULL flag for data items of any other type (binary,
character, or floating point) is set to "N."

Domains

RDM Administration Guide 99

GET Processing with null values
When RDM processes a GET request, each column that is equal to its
null value is given an ASI of missing (-), and is set to zero for numeric
type data or blanks for all other type data. Required columns must be
non-null, as defined in the domain.

INSERT processing with null values
When RDM processes an INSERT command, all columns with a null ASI
(an ASI of N) are set to their corresponding null value, which you
specified in the domain details using the DBA utility.

The application program can insert a null value into a column by
changing the ASI to "N" or by supplying the null value in the column.
(See “RDM status indicators” on page 223 for a description of ASIs.) The
DBAID user can insert a null value by inserting the keyword NULL into
the column or by supplying the null value. Inserting the null value itself is
NOT recommended because if the DBA changes the value of the null,
you may have to change and recompile the application program that
depends on it.

If a column in a view is required, the user cannot input null data. RDM
rejects any attempt to insert a null value into a required column. Null
values for foreign keys are allowed only if the foreign key is not required.
(See “Foreign key value integrity” on page 109 for a description of null
foreign keys.)

UPDATE processing with null values
When RDM processes an UPDATE command, all columns with a null
ASI (an ASI of N) are set to their corresponding null value.

The application program can insert a null value into a column by
changing the ASI to "N" or by supplying the null value in the column. The
DBAID user can insert a null value by inserting the keyword NULL into
the column or by supplying the null value. Inserting the null value itself is
NOT recommended because if the DBA changes the value of the null,
you may have to change and recompile the application program that
depends on it.

If a column in a view is required, the user cannot input null data. RDM
rejects any attempt to insert a null value into a required column. Null
values for foreign keys are allowed only if the foreign key is not required.
(See “Foreign key value integrity” on page 109 for a description of null
foreign keys.)

Chapter 3 View design considerations

100 P25-8220-45

DELETE processing with null values
When a view deletes a primary key, the Base View Definition can allow
for foreign keys to be either cascade deleted or nullified, or it can restrict
the delete (see “Deletion integrity” on page 116). To cascade delete,
specify ALLOW DELETE on the data set that contains the foreign key so
that foreign keys can be deleted. Alternatively, you can ensure that the
foreign key restricts the delete by not adding an ALLOW on the relation
with the foreign key (the target relation), forcing read-only access. This is
useful, for example, if you want to delete a region but not all branches.
With nullify delete, you can set each branch's region number to a null
value until the branch can be reassigned to a new region.

The following example is a base view that illustrates this.

Base View: DELETE-REGION-NULLIFY-BRANCH

View Text:
KEY REGION-NUMBER = REGION-ID

 REGION-NAME

ACCESS REGN

 WHERE REGION-ID = REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID == REGION-ID

 ALLOW UPDATE

See “Foreign key value integrity” on page 109 for details of how RDM can
delete a primary key and nullify a foreign key.

MANTIS and SPECTRA support for nulls
Because MANTIS programs and SPECTRA processes cannot update
ASI fields, to insert a null you must input the null value.

Domains

RDM Administration Guide 101

Default values
RDM uses the default value for a logical data item when no column in the
user view maps to that logical data item, either because the user view
subset does not include the mapping column or because the view does
not contain the mapping column. You define default values in the domain
details that can then be connected to a data item through DBA. The
maximum length for a default value is 32 bytes. Any default that is less
than 32 bytes is padded on the right with blanks.

Examples

♦ This example shows how RDM automatically uses the default value
for a data item. The data set CUST contains the following physical
and logical data items and default values, where appropriate:

Physical data
item name

Column name/logical data item
name

Default
value

CUSTCTRL CUSTOMER-NUMBER
CUSTNAME CUSTOMER-NAME
CUSTCRCO CUSTOMER-CREDIT-CODE C3
CUSTCRLM CUSTOMER-CREDIT-LIMIT 250

 You could then construct the following derived view that would

automatically use the default values for CUSTOMER-CREDIT-CODE
and CUSTOMER-CREDIT-LIMIT:

 Derived View: ADD-CUSTOMER-DEFAULT-VALUES

 View Text:
KEY CUSTOMER-NUMBER

 CUSTOMER-NAME

 CUSTOMER-BRANCH

ACCESS CUSTOMER

 WHERE CUSTOMER-NUMBER = CUSTOMER-NUMBER

 ALLOW ALL

Chapter 3 View design considerations

102 P25-8220-45

 An insert using the view with the values 1001 and McEwan Plastics
would insert the following row into the database:

CUSTOMER-
NUMBER

CUSTOMER-
NAME

CUSTOMER-
CREDIT-CODE

CUSTOMER-
CREDIT-LIMIT

1001 McEwan
Plastics

C3 250

♦ To insert a specified CUSTOMER-CREDIT-CODE or
CUSTOMER-CREDIT- LIMIT column, you must include the column
in the column definition of the view. For example, the following view
would automatically use the default value for
CUSTOMER-CREDIT-CODE, but would allow you to enter a value
for CUSTOMER-CREDIT-LIMIT.

 Derived View: ADD-CUSTOMER-DEFAULT-VALUES-2

 View Text:
KEY CUSTOMER-NUMBER

 CUSTOMER-NAME

 CUSTOMER-BRANCH

 CUSTOMER-CREDIT-LIMIT

ACCESS CUSTOMER

 USING CUSTOMER-NUMBER

 ALLOW ALL

 An insert using the view with the values 1002, Wick Potteries and
500 would insert the following row into the database:

CUSTOMER-
NUMBER

CUSTOMER-
NAME

CUSTOMER-
CREDIT-CODE

CUSTOMER-
CREDIT-LIMIT

1002 Wick Potteries C3 500

Domains

RDM Administration Guide 103

Validation options
You specify validation options on the SUPRA Server Directory when
defining domains. For details on how to define domains, refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260. The validation type tells RDM how to validate the contents of
a column. The four validation options are:

♦ Range checking. Column values should be within a minimum and
maximum range. A range value can be up to 32 bytes long.

♦ Table checking. Column values must match an entry in the
associated validation table. A table value can be up to 72 bytes long.

♦ Exit. Uses a specified RDM user exit to verify the values of the
column.

♦ No validation. Any validation must be done in your application
programs.

You can specify only one validation option for each physical data item; all
options are mutually exclusive.

RDM performs validation checking before each INSERT or UPDATE
whenever a column in a view maps to a physical data item that uses one
of the validation options. If the retrieval validation flag is set on retrieval,
RDM validates the data immediately after the physical GET (at the base
view level). On INSERT or UPDATE, RDM validates the data at the
highest level (at derived view level if a derived view exists, otherwise at
base view level).

If you use global views, validation information will be included in the
Global View file. See “Optimizing view performance using bound and
global views” on page 231 for more information on using global views.

Chapter 3 View design considerations

104 P25-8220-45

Range checking
RDM verifies that a value in a column is within a specified range. You
can specify the minimum value and the maximum value that RDM uses
to validate. Range values are limited to 32 bytes in length, which is
normally sufficient for data types other than character. For character
columns that have lengths greater than 32 bytes, the range value is
padded to the right with blanks before the comparison.

Example. Let's say our example company has seven credit codes:
letters A–G. You can specify this range as the customer credit code
domain CUSTOMER-CLASS. When processing an INSERT or UPDATE
request, RDM ensures that a credit code of anything but A–G is rejected.

Table checking
RDM verifies that a value in a column is contained within a table of values
stored on the SUPRA Server Directory database SUPRAD. You can
build a table of values on the Directory and identify the name of the table
for RDM to use. The DBA must create each validation table on the
SUPRA Server Directory database SUPRAD. Each entry in the table can
be a maximum of 72 bytes long.
Note that if a table contains many values, it is better to create another
data set to store the values, and to use a foreign key to access them.

Example. There may be ten suppliers for a particular part. Whenever
you place an order for that part, RDM verifies that the supplier you specify
is one of the ten you are authorized to use. If the supplier is in the table,
your order is processed.

Exits
You can write your own RDM user exits to perform any domain checking
that the DBA has specified. RDM then calls the user exit when validating
a value in a column. Appendix C on page 295 contains example user
exits in C, FORTRAN, and PASCAL.

Note that you cannot use an RDM validation exit to translate a column
value. (The validation exit must not change the value entered.)

Domains

RDM Administration Guide 105

Join compatibility
RDM ensures that any columns used in a join are from the same domain
unless you explicitly use the domain override (= =) in the access definition
of the view. For example, you cannot join a column connected to a
domain of numbers with a column connected to a domain of
alphanumeric characters. The following ACCESS statement is incorrect
because REGION-ID is from the REGION domain while BRANCH-
REGION-ID is from the BRANCH-REGION domain.
ACCESS REGN

 WHERE REGION-ID = BRANCH-REGION-ID

However, this next example uses the extra equals sign to indicate that
RDM should not perform normal domain checking. This ACCESS
statement is allowed as long as REGION-NUMBER and BRANCH-
NUMBER are the same length.
ACCESS REGN

 WHERE REGION-NUMBER == BRANCH-REGION-ID

ACCESS REGN

 WHERE REGION-NUMBER == BRANCH-REGION-ID

If one or both of the columns in a join do not have a domain, RDM only
verifies that the length of both is the same.

Note that you only specify the domain override (= =) once, between the
first and second columns.

Chapter 3 View design considerations

106 P25-8220-45

Referential integrity with RDM
Referential integrity ensures that two pieces of data representing the
same fact do not become inconsistent. You set up your base views to
maintain referential integrity. For the purpose of this discussion, we will
use the following terminology:

♦ A foreign key is a data item in one data set that can only contain
values found in the primary key of another data set.

♦ The source relation is the data set containing the foreign key as a
data item; its rows depend on primary key values in another data set.

♦ The target relation is the data set containing the primary key values
that match the foreign key values in the source relation; the rows in
the source relation rely on this primary key.

The terminology is relative and expresses the relationship between only
two data sets at a time: the target and the source. As shown in the
following illustration, the values in foreign-key must first exist in
primary-key-a.

primary-key-a

Target relation:

primary-key-b ... foreign-key

Source relation:

To ensure fast retrieval of the source relation, define a secondary key on
the foreign key. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for a description of how
to include data items in secondary keys.

Referential integrity with RDM

RDM Administration Guide 107

The following illustration is an example of how RDM maintains referential
integrity. (The data sets used here are based on the example database
described in Appendix D on page 305.)

CUSTOMER-STATE

CUSTOMER-CITY

CUSTOMER-NAME

BRANCH-STATE

BRANCH-CITY

BRANCH-NAME

CUST Data Set BRAN Data Set

CUSTOMER-NUMBER

BRANCH-ADDRESS

BRANCH-NUMBER

CUSTOMER-ADDRESS

REGION-NUMBER

REGION-NAME

REGN Data Set

CUSTOMER-ZIP-CODE

CUSTOMER-CLASS

CUSTOMER-CREDIT-LIMIT

CUSTOMER-BRANCHFkey

BRANCH-ZIP-CODE

BRANCH-REGION

BRANCH-DELIVERY ROUTE

BRANCH-SALES-QUOTA

BRANCH-STAFF-QUOTA

Fkey

Key KeyKey

This illustration has two foreign keys:

♦ CUSTOMER-BRANCH is the foreign key from CUST to BRAN.
CUST is the source relation; BRAN is the target relation.

♦ BRANCH-REGION is the foreign key from BRAN to REGN. BRAN is
the source relation; REGN is the target relation.

Chapter 3 View design considerations

108 P25-8220-45

Integrity rules and checking
RDM supports the following referential integrity rules:

♦ A foreign key value must exist in the target relation as a primary key.
A primary key value must exist for each foreign key value in a source
relation.

♦ Null values are allowed for a foreign key value.

RDM checks for referential integrity in two ways:

♦ Foreign key value integrity. When inserting or updating a row that
contains a foreign key, the foreign key value must point to a valid
primary key in the target relation or be null. This rule also applies if
the foreign key consists of several key parts (subdefined fields).
RDM performs INSERT or UPDATE integrity only if none of the key
parts is null.

♦ Deletion integrity. RDM will not delete a row unless you first delete
or nullify all foreign keys. This means that you cannot delete a
primary key unless you also delete or nullify rows in a source relation
that contain the key value in a foreign key.

You can implement referential integrity in the column definitions,
ACCESS statements, or some combination.

Referential integrity with RDM

RDM Administration Guide 109

Foreign key value integrity
To enforce foreign key value integrity, define the foreign key in the view.
You can define a required foreign key or a foreign key that allows nulls.
To define a foreign key, you must:

♦ Make the view column required and associated with both the foreign
key in the source relation and the primary key in the target relation.
For example:
REQ REGION-NUMBER == BRANCH-REGION-ID = REGION-ID

Or, identify the foreign key column with the keyword FKEY. For
example:
FKEY REGION-NUMBER == BRANCH-REGION-ID = REGION-ID

♦ Access the target relation through its primary key by using the foreign
key value from a source relation. For example:
ACCESS BRAN
 USING BRANCH-ID
 ALLOW INSERT UPDATE
ACCESS REGN
 WHERE REGION-ID == BRANCH-REGION-ID
 ALLOW INSERT UPDATE

If you use REQ, BRANCH-REGION (the foreign key) must be valid and
non-null. If you use FKEY, BRANCH-REGION must be valid or null.

The rules for defining a foreign key are:

♦ The foreign key may consist of one or more columns. The parts of
the foreign key do not have to be contiguous in the source relation;
however, they must all come from the same physical data set.

♦ When the primary key in the target relation is subdefined and you are
using the subdefined fields in your view, you m7ust use all the parts
of the foreign key to access the target relation through its primary
key. The foreign key parts must provide the full primary key. In the
view, this will cause a one-to-one access from the source relation to
the target relation. You must not specify additional selection criteria
(using the WHERE clause) on any data fields in the target relation.

♦ Each column that is part of the foreign key must be required and
associated with equivalent parts of the foreign key from the source
relation and the primary key from the target relation.

♦ Express all integrity constraints in base views. You must not use the
FKEY option in derived views.

Chapter 3 View design considerations

110 P25-8220-45

Insertion integrity
When you attempt an insert on a data set that contains a foreign key,
RDM ensures that after the insert, the foreign key points to a valid
primary key in the target relation or that the foreign key is null. A foreign
key can be null only if you specify FKEY in the column definition. If you
insert a non-null foreign key value and the primary key in the target
relation does not exist, you can have RDM perform one of two actions:

♦ Reject the insert. You do this by not coding ALLOW INSERT or
ALLOW ALL on the target relation. RDM marks the foreign key
attribute with an ASI of "V" and sets the FSI to "D" or "X." (See “RDM
status indicators” on page 223 for information on RDM status
indicators.) For example:

 Base View: CUSTOMER-INSERT-INTEGRITY

 View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ BRANCH-NUMBER = CUSTOMER-BRANCH-ID = BRANCH-ID

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW INSERT

ACCESS BRAN

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

♦ Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL on the target relation.
For example:

 Base View: CUSTOMER-INSERT-INTEGRITY-2

 View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ BRANCH-NUMBER = CUSTOMER-BRANCH-ID = BRANCH-ID

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW INSERT

ACCESS BRAN

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

 ALLOW INSERT

Referential integrity with RDM

RDM Administration Guide 111

If you have automatic insert of a new primary key, you may require
validation of another foreign key in the automatically added row. In this
case, you must also define the second foreign key. For example:

Base View: CUSTOMER-INSERT-INTEGRITY-3

View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ BRANCH-NUMBER = CUSTOMER-BRANCH-ID = BRANCH-ID

REQ REGION-NUMBER == BRANCH-REGION-ID = REGION-ID

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW INSERT

ACCESS BRAN

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

 ALLOW INSERT

ACCESS REGN

 WHERE REGION-ID == BRANCH-REGION-ID

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

If a customer row is inserted with a BRANCH-NUMBER that does not
exist, RDM inserts a branch row. However, before the branch is inserted,
RDM checks that REGION-NUMBER points to an existing region row. If
not, the insert fails. By placing ALLOW INSERT on the REGN data set,
you could also make RDM perform automatic inserts on the REGN data
set.

You can insert a null foreign key when the column is defined as FKEY
(instead of REQ) either by placing an "N" into the ASI for the column or
by supplying the actual null value; RDM does not perform INSERT
referential integrity in this case because the primary keys cannot be null.
Remember to use the FKEY syntax if the foreign key is likely to be null.

Note that inserting the actual null value is not recommended because the
application is then dependent on that null value. Instead, let RDM insert
the null value defined in the domain by setting the ASI for the column to
"N." See “Null values” on page 98 for information on null values, and
“RDM status indicators” on page 223 for a description of RDM Status
Indicators.

Chapter 3 View design considerations

112 P25-8220-45

Update integrity
When you update a foreign key, RDM ensures that, after the update, the
foreign keys point to a valid primary key in the target relation or that the
foreign key is null (provided the FKEY syntax was used). If you update
the foreign key value and the primary key in the target relation does not
exist, you can have RDM perform one of two actions:

♦ Reject the update. You do this by not coding ALLOW INSERT or
ALLOW ALL on the target relation. RDM will set the foreign key ASI
to "V" and the FSI to "D" or "X." For example:

 Base View: CUSTOMER-UPDATE-INTEGRITY

 View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW UPDATE

ACCESS BRAN

 ONCE

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

♦ Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL on the target relation.
For example:

 Base View: CUSTOMER-UPDATE-INTEGRITY-2

 View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID

 BRANCH-NAME

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW UPDATE

ACCESS BRAN

 ONCE

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

 ALLOW INSERT

Referential integrity with RDM

RDM Administration Guide 113

If the view defines other foreign keys in the automatically inserted target
relation, insert integrity rules apply on the insertion. For example:

Base View: CUSTOMER-UPDATE-INTEGRITY-3

View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID

REQ BRANCH-REGION == BRANCH-REGION-ID = REGION-ID

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW UPDATE

ACCESS BRAN

 ONCE

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

 ALLOW INSERT UPDATE

ACCESS REGN ONCE

 WHERE REGION-ID == BRANCH-REGION-ID

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

You can also specify updating on the target relation. For example, in the
following view you could update both CUSTOMER-NAME and
BRANCH-NAME.

Base View: CUSTOMER-UPDATE-INTEGRITY-4

View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

 CUSTOMER-NAME

REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW UPDATE

ACCESS BRAN

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

 ALLOW UPDATE

Chapter 3 View design considerations

114 P25-8220-45

In the previous example, if you update the foreign key
BRANCH-NUMBER, the update processing positions the BRAN data set
on the row pointed to by the new foreign key value. This means that any
update to BRANCH-NAME would apply to the branch row pointed to by
the new foreign key value, not the branch row retrieved by the GET
before the update. You must be very careful if you allow updating on
both the source relation and the target relation.

You can allow both updates and inserts on the target relation. This
means RDM can update the target relation if the primary key already
exists, or insert the primary key if it does not exist.

If you define the column as FKEY instead of REQ, you can update a
foreign key to null either by supplying the actual null value for the column
or by placing an "N" into the ASI for the foreign key. RDM does not
perform UPDATE referential integrity in this case because primary keys
cannot be null. You can have a null foreign key only if you specify FKEY
in the column definition portion of the view definition.

We do not recommend updating the foreign key to null by inserting the
actual null value because the application is then dependent on that null
value. Instead, let RDM insert the null value defined in the domain by
setting the ASI for the column to "N." See “Null values” on page 98 for
more information on null values, and “RDM status indicators” on
page 223 for more information on RDM Status Indicators.

Referential integrity with RDM

RDM Administration Guide 115

GET processing
Because a foreign key column is defined as required (REQ) and
equivalent to the foreign key from the source relation and the primary key
in the target relation, a GET RDML command must retrieve data from
both the source relation and the target relation. This means that if an
existing foreign key in the database is not valid, a view with the field
defined as a foreign key is unable to retrieve the bad row. RDM will
return an "occurrence not found" message because required data cannot
be retrieved from the target relation—that is, the source foreign key and
the target primary key must have the same value.

In the case of a null foreign key, RDM does not perform a GET on the
target file because a null primary key is not allowed.

The following considerations and examples are for issuing GET
statements. Each example uses DBAID syntax.

♦ When selecting with key values, always issue the first GET command
as follows:
GET FIRST * USING value-1

♦ Issue any subsequent GETs with the same key value as follows:
GET NEXT * USING value-1

♦ Whenever the selection value changes, issue the GET command as
follows:
GET FIRST * USING value-2

Chapter 3 View design considerations

116 P25-8220-45

Deletion integrity
RDM will not allow a row to be deleted unless all foreign keys are first
deleted or nullified. This means that you cannot delete a primary key if
rows exist that contain foreign keys with the same value. To define
referential integrity, you must access the source relation through its
foreign key using the full primary key. For example:
ACCESS REGN

 WHERE REGION-ID = REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-ID = REGION-ID

You may define a secondary key on the foreign key to prevent sequential
scans of the data set containing the foreign key. If the foreign key has
multiple parts, include all the parts in the secondary key. For example:
ACCESS SAMP

 WHERE SAMPLE-NUMBER-SUB1 = SAMPLE-NUMBER-SUB1

 AND SAMPLE-NUMBER-SUB2 = SAMPLE-NUMBER-SUB2

 AND SAMPLE-NUMBER-SUB3 = SAMPLE-NUMBER-SUB3

 ALLOW DELETE

ACCESS TEST

 WHERE BRANCH-TEST-SUB1 = REGION-SAMPLE-SUB1

 AND BRANCH-TEST-SUB2 = REGION-SAMPLE-SUB2

 AND BRANCH-TEST-SUB3 = REGION-SAMPLE-SUB3

You must not supply additional selection criteria on the WHERE clause
for data fields in the source relation because RDM will use this additional
criteria when checking the source relation.

If the source relation is an RMS data set, you should index the foreign
key to improve performance. If the foreign key has multiple parts, include
all parts in the alternate key. An alternate index is important because the
source relation is not usually accessed through its primary key.

Referential integrity with RDM

RDM Administration Guide 117

If you try to delete a primary key, and foreign keys with the same value
still exist in the source relation, you can have RDM perform one of three
actions:

♦ Reject the delete (restrict). You do this by coding ALLOW DELETE
or ALLOW ALL on the target relation, but not on the source relation.

♦ Nullify the dependent foreign keys. You do this by specifying ALLOW
UPDATE on the source relation and ensuring that no columns from
the source relation are included in the column definition.

♦ Delete the dependent foreign keys (cascade). You do this by coding
ALLOW DELETE or ALLOW ALL on the source relation as well as on
the target relation. Provided the column definition does not contain
any columns from the source relation, RDM deletes all occurrences
of the foreign key in the source relation. If the source relation does
provide columns, RDM deletes only one occurrence in the source
relation. RDM deletes the primary key in the target relation when the
last dependent foreign key is deleted.

 When multiple relations depend on the source relation, RDM will
"cascade delete" rows in all specified relations only if you specify
ALLOW DELETE or ALLOW ALL on each relation.

To enforce referential integrity during a delete operation, use one of the
following options:

♦ Restrict delete

♦ Nullify delete

♦ Cascade delete

Chapter 3 View design considerations

118 P25-8220-45

Restrict delete
A delete operation will fail if any dependent rows (based on the foreign
key) exist. Restrict Delete comes into play when there is a one-to-many
relationship. One example of establishing a one-to-many relationship is
accessing via a secondary key: RDM assumes a secondary key access
is one-to-many. If you need a secondary key access to be one-to-one,
then use the keyword ONCE with the ACCESS statement.
The following example shows a restrict delete:

Base View: DELETE-REGION-RESTRICT-BRANCH

View Text:
KEY REGION-NUMBER = REGION-ID

ACCESS REGN

 WHERE REGION-ID = REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID == REGION-ID

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

Referential integrity with RDM

RDM Administration Guide 119

Nullify delete
When RDM performs a delete, it deletes the primary key but nullifies the
foreign key. Follow these rules to nullify a foreign key:

♦ Allow UPDATE on the source relation; you must not ALLOW
DELETE on the source relation.

♦ Access the source relation joining on the foreign key and the primary
key from the target relation. To do this, specify that the foreign key is
equal to the primary key in the WHERE clause of the ACCESS
statement of the data set containing the foreign key. (See the
second WHERE clause in the example below.)

♦ Ensure that the relation containing the foreign key data set supplies
no columns.

♦ Allow DELETE on the target relation.

♦ Set the nulls allowed flag for the foreign key to Y. Refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for details of how to define null values for data items.

The following example shows a base view that can be used to delete the
primary key and nullify the foreign key. In this example, the region is
being deleted and any branches contained in that region will have a null
value assigned to their BRANCH-REGION column. The ALLOW
DELETE clause for the REGN primary data set designates that the
region can be deleted. The ALLOW UPDATE clause on the BRAN data
set designates that the BRANCH-REGION column can be nullified.

Base View: DELETE-REGION-NULLIFY-BRANCH

View Text:
KEY REGION-NUMBER = REGION-ID

 REGION-NAME

ACCESS REGN

 WHERE REGION-ID = REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID == REGION-ID

 ALLOW UPDATE

Chapter 3 View design considerations

120 P25-8220-45

Cascade delete
When you perform a delete operation on a view, you must also delete all
dependent rows (based on the foreign key). The following example
shows a cascade delete:

Base View: DELETE-REGION-CASCADE-BRANCH

View Text:
KEY REGION-NUMBER = REGION-ID

 REGION-NAME

ACCESS REGN

 WHERE REGION-ID = REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID == REGION-ID

 ALLOW DELETE

ACCESS CUST

 WHERE CUSTOMER-BRANCH-ID = BRANCH-ID

 ALLOW DELETE

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

DELETE is allowed for all three relations. If you omit the ALLOW
DELETE (or ALLOW ALL) on any one relation, the delete will fail on all
relations, as it becomes a restricted delete.

Referential integrity with RDM

RDM Administration Guide 121

Referential integrity examples

In the following examples, REGION-ID and BRANCH-REGION-ID are in
different domains so that BRANCH-REGION-ID can be NULL.
Therefore, domain override is required.

♦ This view does not add a branch unless the region already exists. It
does not allow REGION-NUMBER column to be updated unless the
new value points to an existing region.
KEY BRANCH-NUMBER = BRANCH-ID

 BRANCH-ADDRESS

 BRANCH-CITY

 BRANCH-STATE

REQ REGION-NUMBER = BRANCH-REGION-ID = REGION-ID

ACCESS BRAN USING BRANCH-NUMBER

 ALLOW INSERT UPDATE

ACCESS REGN

 WHERE REGION-ID == BRANCH-REGION-ID

 Notice that the foreign key in the BRAN data set is the same as the
primary key in the REGN data set, and the REGN data set is
accessed by its primary key with the foreign key value.

♦ This view checks to see if the region exists. If not, it adds a new
region and then adds the branch. This difference between this view
and the previous view is the ALLOW INSERT clause on the
ACCESS statement for the data set REGN:
KEY BRANCH-NUMBER = BRANCH-ID

 BRANCH-ADDRESS

 BRANCH-CITY

 BRANCH-STATE

REQ REGION-NUMBER = BRANCH-REGION-ID = REGION-ID

ACCESS BRAN USING BRANCH-NUMBER

 ALLOW INSERT UPDATE

ACCESS REGN

 WHERE REGION-ID == BRANCH-REGION-ID

 ALLOW INSERT

Chapter 3 View design considerations

122 P25-8220-45

♦ This view accesses customer, then branch, then region. It allows
updates and inserts into the CUST data set, and only updates to the
BRAN data set. However, it allows neither updates nor inserts to the
REGN data set, so the region must already exist.
KEY CUSTOMER-NUMBER = CUSTOMER-ID

 CUSTOMER-NAME

REQ BRANCH-NUMBER = CUSTOMER-BRANCH-ID = BRANCH-ID

 BRANCH-NAME

REQ REGION-NUMBER == BRANCH-REGION-ID = REGION-ID

 REGION-NAME

ACCESS CUST

 ALLOW UPDATE INSERT

 WHERE CUSTOMER-ID = CUSTOMER NUMBER

ACCESS BRAN

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

 ALLOW UPDATE

ACCESS REGN

 WHERE REGION-ID == BRANCH-REGION-ID

 Thus, you can insert a new customer as long as the BRANCH-
NUMBER already exists. You can then perform an update on the
CUST and BRAN data set.

 To update the column BRANCH-NUMBER, the new foreign key value
must already exist in branch. Also, the update will reposition the
BRAN data set to the new key value before updating
BRANCH-NAME.

Referential integrity with RDM

RDM Administration Guide 123

♦ This example shows how updating a foreign key can affect the
positioning of the subsequent target relations.
KEY CUSTOMER-NUMBER = CUSTOMER-ID

 CUSTOMER-NAME

REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID

 BRANCH-NAME

REQ BRANCH-REGION == BRANCH-REGION-ID = REGION-ID

 REGION-NAME

ACCESS CUST

 WHERE CUSTOMER-ID = CUSTOMER-NUMBER

 ALLOW UPDATE

ACCESS BRAN

 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

ACCESS REGN

 WHERE REGION-ID == BRANCH-REGION-ID

 ALLOW UPDATE

 Let's say a GET on this example returns a row with the following
column values:
CUSTOMER-NUMBER = 15761

CUSTOMER-NAME = CAROL JONES

CUSTOMER-BRANCH = 1000

BRANCH-NAME = BRANCH 1000

BRANCH-REGION = 100

REGION-NAME = REGION 100

 Now, let's say the columns are updated by the application as follows:
CUSTOMER-NUMBER = 15761

CUSTOMER-NAME = CAROL LUCAS

CUSTOMER-BRANCH = 500

BRANCH-NAME = BRANCH 1000

BRANCH-REGION = 100

REGION-NAME = WESTERN REGION

Chapter 3 View design considerations

124 P25-8220-45

When the application issues an UPDATE telling RDM to change the
data in the database, updates to CUSTOMER-NAME and
CUSTOMER-BRANCH are applied as indicated. However, the
change to CUSTOMER-BRANCH repositions the BRAN data set to
the key value of 500. The ACCESS statement for the BRAN data set
does not allow changes. So BRANCH-NAME for Branch 500 is not
changed to 'BRANCH 1000.' Because REGN is accessed through a
foreign key from BRAN, it is also repositioned (to Western Region,
key value 500). Update processing to BRANCH-NAME and
BRANCH-REGION is not performed due to the absence of ALLOW
UPDATE on BRAN. Region remains positioned on key value 500.
The update to REGION-NAME is now made to Region 500 (Western
Region).

 Even though foreign keys are defined as redundancies in the view, it
is the ALLOW phrase on the source relation that controls whether
you can update a foreign key. In the example, you cannot update
BRANCH-REGION because there is no ALLOW UPDATE on the
BRAN data set. Even though there is an ALLOW UPDATE on REGN
and REGION-NUMBER is the same as in BRANCH-REGION, you
cannot update BRANCH-REGION.

♦ This view allows for the region to be deleted if there are no
dependent branches:
KEY REGION-NUMBER - REGION-ID

 REGION-NAME

ACCESS REGN

 WHERE REGION-ID = BRANCH-REGION-ID

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID == REGION-ID

 Notice that the source relation BRAN is accessed through its foreign
key (BRANCH-REGION) using the primary key (REGION-ID). For
optimal performance, consider defining a secondary key for
BRANCH-REGION-ID.

Referential integrity with RDM

RDM Administration Guide 125

♦ This view allows you to delete dependent branch rows, thereby
allowing deletion of the region row. If there are no columns in the
user view from the BRAN data set, deleting a region will also delete
all branches dependent on it. If there are columns from BRAN in the
user view, the program must delete each flat row by using a GET
DELETE loop or by using DELETE ALL.
KEY REGION-NUMBER = REGION-ID

 REGION-NAME

ACCESS REGN

 WHERE REGION-IS = REGION-NUMBER

 ALLOW DELETE

ACCESS BRAN

 WHERE BRANCH-REGION-ID == REGION-ID

 ALLOW DELETE

Chapter 3 View design considerations

126 P25-8220-45

Shared column values
You can share column values between views by specifying ALLOW
SHARED in the ACCESS statement in the base view. You cannot use
ALLOW SHARED in derived views. The advantages of allowing shared
column values are:

♦ More efficient processing because automatic column value checking
is bypassed when not needed.

♦ Modification of the same column in multiple views by the same task
or other tasks. For example:
KEY BRANCH-NUMBER = BRANCH-ID

KEY BRANCH-REGION = BRANCH-REGION-ID

 REGION-NAME

ACCESS BRAN

 WHERE BRANCH-ID = BRANCH-NUMBER

ACCESS REGN

 WHERE REGION-ID == BRANCH-REGION-ID

 ALLOW SHARED UPDATE

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

Using SHARED tells RDM that column values from a view can be shared
between tasks and may change between a GET and a later UPDATE or
DELETE. When the SHARED phrase is present, RDM does not check to
see whether column values changed. If SHARED is not on the ALLOW
phrase in an ACCESS statement, RDM performs a check on each
column in the view, ensuring that column values have not changed. RDM
does not check read-only columns that cannot be updated or deleted.

Shared column values

RDM Administration Guide 127

In the previous example, the only maintenance function that can be
performed is UPDATE, and the only column that can be altered is
REGION-NAME. Because SHARED is part of the ALLOW phrase,
REGION-NAME is automatically altered and the automatic record hold
and replace performed by RDM will not produce an error even if another
view changes the value of the column. If you change the ACCESS
statement to:
ACCESS REGN

 WHERE REGION-ID = BRANCH-REGION-ID

and any other task changes the column, UPDATE or DELETE will fail. In
the case of such a failure, RDM sets the FSI to D, the VSI and one or
more ASIs to C and returns the following message:
COLUMN VALUE CHANGED BY ANOTHER VIEW

The changed columns are denoted by an ASI of "C." In this case, the "C"
will be in the ASI column for REGION-NAME. The "C" VSI takes higher
priority than other VSIs. (See “RDM status indicators” on page 223 for
details about status indicators.)

Chapter 3 View design considerations

128 P25-8220-45

View-to-user relationships
You control database security on a user-by-user basis by defining which
users can use which views. This information is then stored on the
SUPRA Server Directory database SUPRAD and optionally in the Global
View file. Initially, the only user who can access a view is the user who
creates it. Other users cannot access views that you have defined until
you identify them as authorized users. You control user-to-view access
through:

♦ Global views

♦ The DBAID commands PERMIT and DENY

♦ The DBA User authorization function from the Logical View Function
menu

Globalizing views is a method of storing pre-opened views in a shared
global section. You can control user-to-view access through the Global
View file. Depending upon how you create your global views
(interactively or in batch), you can relate users to a global version of a
view even if those users have no access to the non-global version of the
view. Furthermore, you can deny users access to the global version of a
view even if those users are related to the non-global version of the view.
See “Optimizing view performance using bound and global views” on
page 231 for details of global view creation.

The DBAID PERMIT command relates a view to one or more users. The
DBAID DENY command removes the relationship between a view and its
users. With both commands, you can specify more than one user by
separating consecutive user names with a space. See “Defining and
testing views using DBAID” on page 135 for information on the syntax of
both the PERMIT and DENY commands.

In the DBA utility, the User authorization option from the Logical View
Function menu first prompts you for the name of the view to which you
want to specify access. After you enter a valid view name, DBA displays
a numbered list of existing authorized users. The last number in the list
is blank to allow you to specify additional users. If you press RETURN
without specifying a new user name, DBA prompts you to:
Specify function (Allow, Disallow), <PF4> to list or <PF1> to
exit :

View-to-user relationships

RDM Administration Guide 129

You can then remove user-to-view relationships (Disallow) or continue
adding new user-to-view relationships (Allow). The DBA User
authorization function is described in detail in the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260.

Because the user-to-view relationship is stored in the SUPRA Server
Directory database, SUPRAD, any user-to-view relationship defined
through the DBA User authorization function can be removed using the
DBAID DENY command. Likewise, any user-to-view relationship defined
through the DBAID PERMIT command can be removed through the DBA
User authorization function.

You can relate both base and derived views to users. However, you
should not relate users to derived views without authorizing them to use
the base views accessed by the derived views. While the derived view
accesses the base view, it can impose additional security on the user.

Chapter 3 View design considerations

130 P25-8220-45

The following table shows BASE-VIEW-A and DERIVED-VIEW-B.
BASE-VIEW-A allows all maintenance functions to its users, ALICE,
MARY and JIM. User JIM is also related to DERIVED-VIEW-B, which
accesses BASE-VIEW-A allowing read and update. Provided JIM
accesses BASE-VIEW-A from DERIVED-VIEW-B, he is restricted to read
and update access only. Thus, DERIVED-VIEW-B provides additional
security by restricting its user (JIM) to read-only access to
BASE-VIEW-A.

BASE-VIEW-A DERIVED-VIEW-B
KEY CUSTOMER-NUMBER KEY CUSTOMER = CUSTOMER-NUMBER
 CUSTOMER-NAME NAME = CUSTOMER-NAME
 CUSTOMER-ADDRESS STREET = CUSTOMER-ADDRESS
 CUSTOMER-CITY CITY = CUSTOMER-CITY
 CUSTOMER-STATE STATE = CUSTOMER-STATE
 CUSTOMER-ZIP-CODE ZIPCODE = CUSTOMER-ZIP-CODE
 CUSTOMER-CLASS
 CUSTOMER-CREDIT-LIMIT
 CUSTOMER-BRANCH
ACCESS CUST ACCESS BASE-VIEW-A
 USING
CUSTOMER-NUMBER

 USING CUSTOMER-NUMBER

 ALLOW ALL ALLOW UPDATE

Authorized Users: Authorized Users:
 ALICE JIM
 MARY
 JIM

RDM Administration Guide 131

4
Physical and logical database changes

Overview
RDM insulates application programs from most changes to the physical
database. However, certain changes require modifications, either to the
application programs or to the views, to maintain the integrity of the
database.

Physical and logical database actions
The following table lists physical and logical changes together with any
necessary actions.

 Action

Change
program

Recompile
program

Modify
view
definition

Reglobalize /
rebind view

Validate /
compile
DB

Data set
changes

Add a new data
set

 ✔ ✔ ✔

RMS data set into
PDM data set

 ✔ ✔ ✔

PDM data set into
RMS data set

 ✔ ✔ ✔

Combine two data
sets into one

 ✔ ✔ ✔

Delete a data set if
it contains a
column for a view

✔ ✔ ✔ ✔ ✔

Chapter 4 Physical and logical database changes

132 P25-8220-45

 Action

Change
program

Recompile
program

Modify
view
definition

Reglobalize /
rebind view

Validate /
compile
DB

Rename a data set ✔ ✔ ✔
Split one data set
into several

 ✔ ✔ ✔

Change a PDM
data set type

 ✔ ✔ ✔

Change a record
length

 ✔ ✔ ✔

Change a
linkpath location

 ✔ ✔ ✔

Change the
physical key
length

✔ ✔ ✔ ✔ ✔

Change the
length of the base
portion of a
coded record

 ✔ ✔

Change the
position of the
key in a primary
record

 ✔ ✔

Add or remove an
index

 ✔ ✔ ✔

Physical
changes

Add new data
items to a record

 ✔

Change data item
length

✔ * ✔ ✔ ** ✔ ✔

Change data item
type

✔ * ✔ ✔ ** ✔

* Does not apply to MANTIS programs
** Modify only if a constant column maps to the data item

Physical and logical database actions

RDM Administration Guide 133

 Action

Change
program

Recompile
program

Modify
view
definition

Reglobalize /
rebind view

Validate /
compile
DB

No. of Decimal
places

✔ * ✔ ✔ ** ✔

Physical data
item's location

 ✔ ✔ ✔

Delete data item
from physical
record if used by
view and
program

✔ ✔ ✔ ✔ ✔

Change null
value, or nulls
allowed

 ✔

Change default
value

 ✔

Change
validation type

 ✔

Change
validation data
(range, table
name, exit)

 ✔

Logical
changes

Add columns to
a view

 ✔ ✔

Change unique
key to non-
unique

✔ ✔ ✔ ✔

Change
relationship and
program
depends upon
relationship

✔ ✔ ✔ ✔

Chapter 4 Physical and logical database changes

134 P25-8220-45

 Action

Change
program

Recompile
program

Modify
view
definition

Reglobalize /
rebind view

Validate /
compile
DB

Define a new
view

No change required

Delete data item
or column and
program uses
field or column

✔ ✔ ✔ ✔ ✔

Rename a
column and
program uses
column on
include

✔ ✔ ✔ ✔

Reorder
columns

 ✔ ✔

RDM Administration Guide 135

5
Defining and testing views using DBAID

Through the DBAID Test Facility, you can define and test views before
actually using them in production. You can also use the DBAID Test
Facility to learn how the Relational Data Manager (RDM) works. A good
way to implement new views is to check them out with DBAID prior to
use.

Using DBAID, you can define a new view, open it, issue Relational Data
Manipulation Language (RDML) commands, and examine the results.
You can then change the view if necessary, reorder it for efficiency, or
experiment with various navigation methods.

DBAID enables you to store the new view on the Directory. You can also
load existing views from the Directory, change them to meet
requirements, and then test them.

DBAID has commands that programmers can use to try out views
defined for them. These commands are the programmers' subset of
DBAID commands. With them, the programmer can learn the command
functions. However, the programmer cannot update the Directory or
define new views.

To edit a view, make sure you list the view text before you open the view.
This makes the text of the view known to DBAID. Such a view is called a
virtual view, and you can list any view in this way. However, if you open a
view first, you must be authorized to use that view. See “View-to-user
relationships” on page 128 for more information on user access authority.

When you define a base view using DBAID (see “Defining and testing
views using DBAID” on page 135), specify the column definition as lines
of text, each preceded by a line number. When you define a view using
DBA Functions (refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260), specify the column
definition through the screen-based EDT editor interface. When defining
a view through DBA, you do not need to specify each line number as you
do through DBAID. However, although you can open and save views
through DBA as you can through DBAID, you cannot test them online.

DBAID can use any view defined on the Directory. However, views
defined within DBAID that refer to physical data items in the column
definition, rather than logical data items, cannot be saved on the
Directory.

Description

Chapter 5 Defining and testing views using DBAID

136 P25-8220-45

Invoking DBAID
If you use the procedure SUPRA_COMS:SUPRA_SYMBOL.COM, you
will have a symbol DBAID that executes SUPRA_EXE:RUNDBAID.COM.
This procedure checks for the existence of the logical CSI_SCHEMA.
This logical is required to use RDM. If the logical is defined, it will be
used. Otherwise, the procedure prompts you for your database name
and uses it to define CSI_SCHEMA. Alternatively, you can select the
DBAID Test Facility from the SUPRA Facilities screen, or set up your own
symbol or command file. During any DBAID session, you can use views
only if they are associated with one database description. This database
description is defined using the logical name CSI_SCHEMA. For
example, the following commands could be used to invoke DBAID:
$DEFINE CSI_SCHEMA TESTDB
$RUN CSVDBAID

If you do not define CSI_SCHEMA, you receive the following message:
"ERROR NO LOGICAL NAME FOR USER DBMOD."

A command file, RUNDBAID, is supplied to invoke DBAID. For example,
to invoke DBAID with database TESTDB, you could enter @RUNDBAID
TESTDB or just @RUNDBAID with no parameters.

Invoking DBAID

RDM Administration Guide 137

If the database contains RMS files, you can enable VMS RMS Recovery
Unit Journaling. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for a description of how
to enable Recovery Unit Journaling for physical files. Define the logical
name CSI_RMS_RU_ON to be TRUE before invoking DBAID. This
allows the transactions to the RMS files to be logged in a journal file that
can be used to update or reset the RMS files if required.

You can define the logical CSI_RMS_RU_ON TRUE at the level of your
database so it will be available to all users of that database. This will be
in the group logical name table for a group-wide database, or in the
system logical name table for a system-wide database. If you are using a
multiple system-wide PDM, you can choose to define the logical in the
CSI_PDM_pdmname table. If you choose to define the logical in one of
these shared logical name tables, you do not need to repeat the definition
unless the machine on which you are working goes down. Alternatively,
define CSI_RMS_RU_ON TRUE before invoking DBAID as follows:
$DEFINE CSI_RMS_RU_ON TRUE
$RUN CSVDBAID

This ensures that records in RMS data sets are rolled back to the last
successful COMMIT point in the event of a system or application failure.
This matches Task Level Recovery for PDM data sets.

RMS Recovery Unit Journaling will not work across a network. RMS files
marked for Recovery Unit Journaling are inaccessible from a remote
node running RDM applications.

Chapter 5 Defining and testing views using DBAID

138 P25-8220-45

Signing on to DBAID
You sign on to DBAID by responding to the prompt "PLEASE SIGN ON"
with your 1–30 character user name. You must also supply a password if
one was defined for you on the Directory. The password can be 1–8
alphanumeric or printable characters. You can enter the password on
the same line as your user name, provided you precede the password
with a space. If you enter your password on the same line as your user
name, the password is displayed on the screen as you enter it. If you do
not enter a password after your user name, DBAID displays a password
prompt even if you do not have a password. Press RETURN in response
to this prompt if you have no password; enter the password and press
RETURN if you have a password. The password is not echoed when
entered in response to the "Password:" prompt.

In the following example, INVENTORY-SYSTEM is the user name and
SCALES is the password. When you successfully sign on, you receive
the message "SUCCESSFUL COMPLETION - LEVEL 05." You can then
begin entering commands.

SUPRA RELEASE 2.4
WELCOME TO DBAID - LEVEL -05

PLEASE SIGN ON.
>INVENTORY-SYSTEM SCALES
FSI: * VSI: = MSG: SUCCESSFUL COMPLETION - LEVEL 05
>

Using DBAID commands

RDM Administration Guide 139

Using DBAID commands
Defining a view using DBAID involves the same syntax and
considerations as when you define a view using the DBA functions
explained in the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260. DBAID has four types of commands:

♦ Relational Data Manipulation Language (RDML) commands enable
you to use test data with a defined view to make sure the view is
properly defined.

♦ Editing commands enable you to change stored view definitions and
to create new views to be tested before storing them on the
Directory. After you have tested a new view with DBAID, you can
store it on the Directory.

♦ System commands enable you to display information about the
currently running DBAID Test Facility. Use these commands to
display current DBAID users and active views.

♦ Built-in view commands enable you to inspect the view after it is
opened.

The following table alphabetically lists all the DBAID commands within
each category and provides a brief description and a section reference
for detailed information. Commands available in the programmer's
subset are indicated by a check mark (!).

DBAID also provides a HELP facility. If you enter HELP in reply to a
DBAID prompt, a list of topics available within the HELP facility displays.
You can then select the topic by entering enough of the topic name for
the selection to be unique. Some topics also have a list of subtopics.

Alternatively, you can directly access a topic by entering the topic name
with the command HELP. For example:
>HELP DELETE

This entry gives information specific to DELETE. Note that to display
information for the * command, you must use HELP ASTERISK. If you
enter HELP *, the * acts as a "wildcard." Wildcard means that all topics
are included in the help description.

Chapter 5 Defining and testing views using DBAID

140 P25-8220-45

RDML commands

Command

Programmer's
subset

Description

Section reference

= ! Reissues the previous
RDML command.

“= command” on
page 148

BYE ! Exits DBAID. “BYE command” on
page 152

CAUTIOUS ! Prohibits an automatic
COMMIT.

“CAUTIOUS
command” on
page 153

COMMIT ! Issues an RDM COMMIT
command.

“COMMIT command”
on page 159

DELETE ! Issues an RDM DELETE
command.

 “DELETE command”
on page 162

ERASE ! Causes an RDM RESET
to be issued when an "X"
FSI is returned.

“ERASE command” on
page 166

FORGET ! Removes the specific
mark from the list of
marks in use.

“FORGET command”
on page 172

GET ! Issues an RDM GET
command which retrieves
and displays the
requested row.

“GET command” on
page 173

GO ! Issues multiple RDM
GET commands and
displays the rows in
tabular format.

“GO command” on
page 179

INSERT ! Issues an RDM INSERT
command.

 “INSERT command”
on page 183

KEEP ! Prohibits an automatic
RESET.

“KEEP command” on
page 188

Using DBAID commands

RDM Administration Guide 141

Command

Programmer's
subset

Description

Section reference

MARK ! Issues an RDM MARK
command. Marks the
current position of the row
established by the
previous GET.

“MARK command” on
page 193

OPEN ! Readies for use either a
virtual or stored view.

“OPEN command” on
page 195

RELEASE ! Issues an RDM RELEASE
command. Closes all
opened views and
releases the occupied
storage.

“RELEASE command”
on page 201

RESET ! Issues an RDM RESET
command.

“RESET command” on
page 204

SIGN-OFF ! Signs off the user from
DBAID.

“SIGN-OFF command”
on page 208

SIGN-ON ! Identifies the user to
DBAID.

“SIGN-ON command”
on page 209

SURE ! Causes a COMMIT after
each successful insert,
update, or delete.

“SURE command” on
page 213

UPDATE ! Issues an RDM UPDATE
command.

“UPDATE command”
on page 215

Chapter 5 Defining and testing views using DBAID

142 P25-8220-45

Editing commands

Command

Programmer's
subset

Description

Section reference

DEFINE Defines a name for a
virtual view.

“DEFINE command” on
page 161

EDIT Readies a stored or virtual
view for modification.

 “EDIT command” on
page 165

line-number Deletes, adds, or replaces
a line in the currently
editable view.

“line-number
command” on
page 189

LIST Lists a stored or virtual
view and readies it for
modification.

“LIST command” on
page 191

RENUMBER Renumbers a virtual view
so that line numbering
starts at 10 with each line
incremented by 10.

“RENUMBER
command” on
page 203

UNDEFINE ! Removes a defined virtual
view.

“UNDEFINE command”
on page 214

Using DBAID commands

RDM Administration Guide 143

System commands

Command

Programmer's
subset

Description

Section reference

* ! Used with other commands
to indicate the last view
name used.

“* command” on
page 146

BIND Binds the view. “BIND command” on
page 149

COPY Copies the definition of one
view to another view.

“COPY command” on
page 160

DENY Removes the relationship
between a user and a view
on the Directory.

“DENY command” on
page 164

LINESIZE ! Specifies the width of lines
for DBAID output.

“LINESIZE command”
on page 190

MARKS ! Lists all open MARKs and
the views they are marking.

“MARKS command”
on page 194

PAGESIZE ! Specifies the number of lines
on the page/screen for
DBAID output.

 “PAGESIZE
command” on
page 198

PERMIT Relates a view to a user on
the Directory.

“PERMIT command”
on page 199

REMOVE Removes the view access
definition, its binding, and the
relationship between it and
the database. This
command is for use only by
the DBA.

“REMOVE command”
on page 202

SAVE Saves a virtual view
definition that has been
opened with the OPEN
command.

“SAVE command” on
page 205

USER-LIST ! Displays the column
definition for the view named.

“USER-LIST
command” on
page 218

VIEWS ! Displays all views active in
DBAID.

“VIEWS command” on
page 221

Chapter 5 Defining and testing views using DBAID

144 P25-8220-45

Built-in logical view commands

Command

Programmer's
subset

Description

Section reference

BY-LEVEL ! Displays the column
names in the view by
level of occurrence.

“BY-LEVEL command”
on page 150

COLUMN-
DEFN

! Displays the full
description of a column in
a view.

“COLUMN-DEFN
command” on page 154

COLUMN-
TEXT

! Displays the short and
long text for a column in
a view.

“COLUMN-TEXT
command” on page 158

FIELD- DEFN ! Displays the full
description of a column in
a view.

“FIELD-DEFN command”
on page 167

FIELD- TEXT ! Displays the short and
long text for a column in
a view.

“FIELD-TEXT command”
on page 170

SHOW-
NAVIGATION

! Displays the access
strategy used by the
view.

“SHOW-NAVIGATION
command” on page 207

VIEW- DEFN ! Displays a condensed
description of the view.

“VIEW-DEFN command”
on page 219

VIEWS-
FOR-USER

! Lists the views related to
the signed-on user, along
with the short text for the
view.

“VIEWS-FOR-USER
command” on page 222

Using DBAID commands

RDM Administration Guide 145

Statistics commands

Command

Programmer's
subset

Description

Section reference

PRINT-
STATS

! Displays current statistics
for all views.

“PRINT-STATS
command” on
page 200

STATS ! Displays current statistics
for all open views or a
particular open view.

“STATS command” on
page 210

STATS-OFF ! Displays the current
statistics for all views and
then disables the
statistics gathering.

“STATS-OFF
command” on
page 211

STATS-ON ! Initializes statistics to
zero then enables the
gathering of statistics on
user views on both the
logical and physical level.

“STATS-ON command”
on page 212

Chapter 5 Defining and testing views using DBAID

146 P25-8220-45

* command
You can use the asterisk (*) in DBAID for two functions: as a substitute
for the last view name used or to denote a comment when editing a view.

*

General consideration

 Using * as a substitute for the last view name used is described in the
explanation of each supported command.

Examples

♦ Using * as a substitute for the last view name used:
 OPEN VIEW

 GET * (Performs GET on VIEW)

 OPEN VIEW2 = * column1,column5

 GET * (Performs GET on VIEW2)

Using DBAID commands

RDM Administration Guide 147

♦ Using * to denote a comment:
 * Comment line for column 1

 COLUMN-1

 * Comment line for column 2

 COLUMN-2

 * Comment line for ACCESS statement 1

 ACCESS

 * Comment line denoting end of access definition

 Comment lines entered in the access definition of a view are saved
as entered. However, comments entered before the first ACCESS
statement in a view are saved at the top of the view, regardless of
where you originally define them. For example, if you save the
preceding view through DBA or DBAID, comment lines are reordered
so that the next time you list the view, comment lines are reorganized
as follows:

 * Comment line for column 1

 * Comment line for column 2

 * Comment line for ACCESS statement 1

 COLUMN-1

 COLUMN-2

 ACCESS

 * Comment line denoting end of access definition

 As you can see, comments before the first ACCESS statement in the
view are all saved at the top of the view, whereas comments in the
access definition remain as originally defined.

Chapter 5 Defining and testing views using DBAID

148 P25-8220-45

= command
The = command reissues the previous RDML command.

=

General consideration

 The = command repeats the previous command exactly, even if the
command was invalid.

Example

In this example, the = command reissues the GET NEXT command
preceding it.
GET NEXT CUSTOMER-PRODUCT-VIEW

=

Using DBAID commands

RDM Administration Guide 149

BIND command
The BIND command saves and binds the specified view.

BIND view-name

view-name

Description Required. Specifies the view to be saved and bound.

Format A valid view name.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

Chapter 5 Defining and testing views using DBAID

150 P25-8220-45

BY-LEVEL command
The BY-LEVEL command displays the column names in a view by level
of occurrence, starting with level 0, followed by level 1, and so on. RDM
generates the column number when displaying this data.

BY-LEVEL [view-name [column-number]]

view-name

Description Optional. Specifies the name of the view whose column names are to be
displayed.

Format A valid and opened view name.

Considerations

♦ If you omit the view name, RDM displays all column names for all
your opened views, including columns from base views opened by
derived views.

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

column-number

Description Optional. Specifies the number of the column whose name is to be
displayed.

Format An integer value.

Considerations

♦ If you use this parameter, you must specify a view name.

♦ If you omit this parameter, all column names of the specified view
display.

Using DBAID commands

RDM Administration Guide 151

Example This example displays the column names in all opened views; in this
case, the base view STOCK and the derived view
PRODUCTS-IN-REGION. Columns are listed by level of occurrence.

>BY-LEVEL PRODUCTS-IN-REGION

! NUMBER ! VIEW NAME ! FIELD NAME LEVEL!
! 1 !STOCK !STOCK-NO 0!
! 2 !STOCK !STOCK-PRODUCT 0!
! 1 !PRODUCTS-IN-REGION !REGION-NO 0!
! 2 !PRODUCTS-IN-REGION !REGION-NAME 0!
! 3 !PRODUCTS-IN-REGION !BRANCH-NO 1!
! 4 !PRODUCTS-IN-REGION !REGION-NAME 1!
! 5 !PRODUCTS-IN-REGION !STOCK-PRODUCT 2!
! 6 !PRODUCTS-IN-REGION !PRODUCT-DESC 2!
! 1 !*INT00003-PRODUCT !PRODUCT-CODE 0!
! 2 !*INT00003-PRODUCT !PRODUCT-DESC 0!
! 1 !*INT00002-STOCK !STOCK-BRANCH 0!
! 2 !*INT00002-STOCK !STOCK-PRODUCT 0!
! 1 !*INT00001-BRANCH !BRANCH-NO 0!
! 2 !*INT00001-BRANCH !BRANCH-NAME 0!
! 3 !*INT00001-BRANCH !BRANCH-REGION 0!
! 1 !*INT00000-REGION !REGION-NO 0!
! 2 !*INT00000-REGION !REGION-NAME 0!

View names in the format *INTnnnnn-viewname are base views opened
by the derived view immediately preceding them in the VIEW NAME
column.

*INT Indicates that this is a base view opened by a derived
view.

nnnnn Indicates the order in which the base view was opened
(00000 is the first view opened by the derived view,
00001 the second, 00002 the third, and so on).

-viewname Identifies the name of the base view.

It is important to identify how a base view was opened because each
base view can be opened by more than one derived view, as well as
independently. This is illustrated in the above example by the base view
STOCK. STOCK is opened independently as the base view STOCK; at
the same time, it is opened by the derived view PRODUCTS-IN-REGION.
When STOCK is opened by PRODUCTS-IN-REGION, it is assigned the
internal name *INT00002-STOCK to distinguish it from the base view
STOCK, opened independently, and to indicate that it is the third base
view opened by PRODUCTS-IN-REGION.

Chapter 5 Defining and testing views using DBAID

152 P25-8220-45

BYE command
The BYE command exits the DBAID Test Facility.

BYE

General considerations

♦ The BYE command exits the CSVDBAID image.

♦ Any unsaved virtual views are erased.

Using DBAID commands

RDM Administration Guide 153

CAUTIOUS command
The CAUTIOUS command disables the DBAID automatic COMMIT
processing. This command is the opposite of the SURE command.
When you use CAUTIOUS, DBAID does not automatically issue a
COMMIT when an RDML INSERT, UPDATE, or DELETE command
returns an "*" FSI. Instead, you must issue the COMMIT explicitly.

CAUTIOUS

General considerations

♦ DBAID normally issues a COMMIT after every successful RDML
modification. The CAUTIOUS command is not required; however, it
gives you more control over COMMIT commands when updating the
database.

♦ CAUTIOUS only affects your database, not the SUPRA Server
Directory (SUPRAD). An implicit COMMIT is issued to the SUPRA
Server Directory by the DBAID system commands BIND, DENY,
PERMIT, REMOVE, and SAVE. These COMMITs must be issued
after the Directory is modified for them to take effect.

Chapter 5 Defining and testing views using DBAID

154 P25-8220-45

COLUMN-DEFN command
The COLUMN-DEFN command displays the full description of columns in
a view.

For compatibility purposes, you can use the FIELD-DEFN command in
the same manner as the COLUMN-DEFN command.

COLUMN-DEFN [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid and opened view.

Considerations

♦ If you omit this parameter, the COLUMN-DEFN command displays
all column descriptions for all your opened views.

♦ You can enter * instead of a view name. This causes DBAID to
substitute the last view name used.

column-name

Description Optional. Identifies the column whose text is to be displayed.

Considerations

♦ The column must already be part of the view.

♦ If you use this parameter, you must have specified a view name.

♦ If you omit this parameter, the COLUMN-DEFN command displays
all column descriptors for each column of the specified view, one at a
time.

Using DBAID commands

RDM Administration Guide 155

Example This example displays a description of one of the columns in the STOCK
view. See the following table for an explanation of each column
descriptor.
VIEW-NAME (+) STOCK

COL-NAME (+) STOCK-BRANCH

COL-POS (+) 0

COL-LEN (+) 4

COL-ASI-POS (+) 33

COL-DEC (+) 0

COL-OUTP-LEN (+) 4

COL-MASK-LEN (-) 0

COL-FORMAT (+) C

COL-MASK (-)

COL-HEADING (-)

COL-DEL-OPT (+) Y

COL-INS-OPT (+) Y

COL-UPD-OPT (+) N

COL-REDUND (+) N

COL-CONSTANT (+) N

COL-LEVEL (+) 0

COL-KEY-NUM (+) 1

COL-REQUIRED (+) Y

COL-UNIQUE (+) Y

COL-EDIT-TRANS (+)

COL-ORDERING (-)

COL-SIGNED (+) Y

COL-NULLS-OK (+) N

COL-NULL-LEN (-) 0

COL-NULL-VAL (-)

COL-DOMAIN (-)

COL-VAL-TYP (-)

COL-GET-VAL (+) Y

COL-MIN-LEN (-) 0

COL-MIN-VAL (-)

COL-MAX-LEN (-) 0

COL-MAX-VAL (-)

COL-VAL-TABLE (-)

COL-EXIT (-)

COL-SRC-TYP (+) F

COL-SRC-COL (+) STOCK-BRANCH-ID

COL-SRC-REL (+) STCKBRAN

COL-INT-REL (+) STCK

COL-RC (+)

Chapter 5 Defining and testing views using DBAID

156 P25-8220-45

Keys for the view
VIEW-NAME Name of the view
COL-NAME Name of the column

Data needed to read the column from the row
COL-POS Offset of column value from (0) start of row
COL-LEN Length of column value in bytes
COL-ASI-POS Distance ASI for column is offset from start of

user buffer

Data needed to display the column
COL-DEC Number of decimal places
COL-OUTP-LEN Edited output length
COL-MASK-LEN Length of output mask
COL-FORMAT Column format
COL-MASK Column mask
COL-HEADING Column heading

Logical data about the column
COL-DEL-OPT Y = Column may be deleted
COL-INS-OPT Y = Column may be inserted
COL-UPD-OPT Y = Column may be updated
COL-REDUND Y = Column is redundant
COL-CONSTANT Y = Column is a constant
COL-LEVEL Level of occurrence
COL-KEY-NUM 0 - 9 = Column key number
COL-REQUIRED Y = Column is required
COL-UNIQUE Y = Column is unique
COL-EDIT-TRANS Reserved for future use
COL-ORDERING A = Ascending order, D = Descending order
COL-SIGNED Y = Column is signed

Using DBAID commands

RDM Administration Guide 157

Data about null value for the column
COL-NULLS-OK Y = Nulls are allowed
COL-NULL-LEN Length of the null value
COL-NULL-VAL Null value in external format

Validation criteria for the column
COL-DOMAIN Domain name, if any
COL-VAL-TYP Validation type, R = Range, T = Table, E = Exit
COL-GET-VAL Y = Validation done after GET
COL-MIN-LEN Length of minimum value
COL-MIN-VAL Minimum value in external format
COL-MAX-LEN Length of maximum value
COL-MAX-VAL Maximum value in external format
COL-VAL-TABLE Validation table name
COL-EXIT Validation exit name

Source column data
COL-SRC-TYP Source type for the column: F = Data set, V =

View.
COL-SRC-COL If COL-SRC-TYP is "F," this field contains the

logical data item name; if COL-SRC-TYP is
"V," this field contains the source column
name.

COL-SRC-REL If COL-SRC-TYP is "F," this field contains the
physical data item name; if COL-SRC-TYP is
"V," this field contains the source view name.

COL-INT-REL If COL-SRC-TYP is "F," this field contains the
data set name; if COL-SRC-TYP is "V," this
field contains the user view name.

COL-RC If COL-SRC-TYP is "F," this field contains the
record code, if any.

Chapter 5 Defining and testing views using DBAID

158 P25-8220-45

COLUMN-TEXT command
The COLUMN-TEXT command displays the comments for a column in a
view. For compatibility purposes, you can use the FIELD-TEXT
command in the same manner as the COLUMN-TEXT command.

COLUMN-TEXT [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid and opened view.

Considerations

♦ If you omit this parameter, the COLUMN-TEXT command displays
the short and long text for all your opened views.

♦ You can enter * instead of a view name. This causes DBAID to
substitute the last view name used.

column-name

Description Optional. Identifies the column whose text is to be displayed.

Considerations

♦ The column must already be part of the view.

♦ If you use this parameter, you must specify a view name.

♦ If you omit this parameter, the COLUMN-TEXT command displays
the comments for all columns.

Using DBAID commands

RDM Administration Guide 159

COMMIT command
The COMMIT command issues an RDM COMMIT request. All updates
since the last COMMIT are made permanent in the database.

COMMIT

General considerations

♦ DBAID automatically issues a COMMIT after every successful
modification (INSERT, UPDATE, and DELETE). The COMMIT
command is not required in DBAID.

♦ Automatic commit processing is turned off with the CAUTIOUS
command and turned on with the SURE command.

Chapter 5 Defining and testing views using DBAID

160 P25-8220-45

COPY command
The COPY command copies the view definition of one view to another
view.

COPY view-name1 view-name2

view-name1

Description Required. Identifies the name of the view to be copied.

Format Must be a valid view on the Directory for the database specified or a
virtual view.

view-name2

Description Required. Identifies the new name for the view being copied.

Format 1–30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

♦ After being copied, the new view is listed (see “LIST command” on
page 191) and is available for editing.

♦ The copied view is virtual; it is not copied onto the Directory.
General consideration

 DBAID first looks for a virtual view with the name view-name1. If the view
is not found, DBAID searches the Directory for the view. Once DBAID
finds the view text on the Directory, it creates a virtual view view-name1.
DBAID then copies the contents of view-name1 to view-name2, and lists
view-name2. In DBAID, both copies result as virtual views.

Example This example copies CUSTOMER from the Directory and names it
NEW-CUSTOMER. NEW-CUSTOMER is listed and is available for
editing.
COPY CUSTOMER NEW-CUSTOMER

Using DBAID commands

RDM Administration Guide 161

DEFINE command
The DEFINE command defines a new view to DBAID.

DEFINE view-name

view-name

Description Required. Specifies the name of a new view.

Format 1–30 alphanumeric characters and hyphens. The first character must be
alphabetic.

General considerations

♦ The DEFINE command does not go to the Directory to retrieve a
view. It creates a virtual view that exists only within the DBAID
execution. You can eventually save this view on the Directory (see
“SAVE command” on page 205).

♦ Once you issue the DEFINE command, you can use the line-number
command (see “line-number command” on page 189) to define the
columns in your view.

Example This example defines the view CUSTOMER to DBAID.
DEFINE CUSTOMER

Chapter 5 Defining and testing views using DBAID

162 P25-8220-45

DELETE command
The DELETE command issues an RDM DELETE request, which
removes one or more row occurrences from the database.

DELETE [ALL] view-name

ALL

Description Optional. Deletes all rows that satisfy the logical key qualification of the
GET command issued before the DELETE.

Consideration If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in a view.

view-name

Description Required. Identifies the name of the view that contains the row(s) to be
deleted.

Format Must be a valid and opened view.

Considerations

♦ We recommend that before performing the DELETE, you perform a
successful GET command that contains a FOR UPDATE clause, in
case another task changes the row between the GET and the
DELETE.

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

General considerations

♦ RDM deletes rows only if the ALLOW clause specifies DEL or ALL.
See Example 4.

♦ RMS interfile integrity is maintained only for those RMS data sets
within the view. RDM does not check indexes to other RMS data
sets not included in the access definition.

Using DBAID commands

RDM Administration Guide 163

Examples

♦ This example deletes one occurrence of SAMPLE-VIEW obtained by
using the value in KEY1:

 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE SAMPLE-VIEW

♦ This example deletes all occurrences of rows containing KEY1:
 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE ALL SAMPLE-VIEW

 The above example works as if the following loop were performed:
 GET FIRST SAMPLE-VIEW FOR UPDATE USING KEY1

 NOT FOUND GO TO CONTINUE.

 LOOP.

 GET NEXT SAMPLE-VIEW FOR UPDATE USING KEY1

 NOT FOUND GO TO CONTINUE.

 DELETE SAMPLE-VIEW.

 GO TO LOOP.

 CONTINUE.

♦ This example deletes all rows in SAMPLE-VIEW:
 GET SAMPLE-VIEW.

 DELETE ALL SAMPLE-VIEW.

♦ This RMS example shows the statements used by the GET and
DELETE commands to delete all rows from the CUST and ORDR
data sets:

 Name: CUSTOMER-ORDER-VIEW

 KEY CUSTOMER-NUMBER = CUSTOMER-ID = ORDER-CUST-ID

 KEY ORDER-NUMBER = ORDER-ID

 ACCESS CUST

 USING CUSTOMER-NUMBER

 ALLOW DELETE INSERT

 ACCESS ORDR

 USING CUSTOMER-NUMBER

 ALLOW ALL

 GET CUSTOMER-ORDER-VIEW

 DELETE ALL CUSTOMER-ORDER-VIEW

Chapter 5 Defining and testing views using DBAID

164 P25-8220-45

DENY command
The DENY command revokes a user's privilege to use a view in the
SUPRA Server Directory. The command removes the relationship
between the user and the view entities on the Directory. This command
can provide security because it allows the DBA to define in the Directory
who can use a view. Note that use of global views can be used to
override this security.

DENY view-name user-name1 [...user-namen]

view-name

Description Required. Specifies the name of the view to which the user is denied
access.

Format Must be a valid view.

Consideration You can enter an * instead of a view name. DBAID then substitutes the
last view name used.

user-name1 [...user-namen]

Description Required. Specifies the name of the user who is to be denied access to
a view.

Format Must be a valid user ID, defined on the Directory.

Consideration You can specify more than one user in a single DENY command by
separating each user name with a single space.

General considerations
♦ Use of global views may override the user-to-view relationship in the

SUPRA Server Directory.

♦ You can use the DENY command to remove the relationship
between a user and a view, regardless of whether the relationship
was created with Directory maintenance or the PERMIT command.

♦ After successfully removing the relationship for each user, DBAID
issues a COMMIT to the SUPRA Server Directory database
SUPRAD.

♦ If an error occurs while removing the relationship, DBAID issues a
RESET and terminates processing of the command.

Using DBAID commands

RDM Administration Guide 165

EDIT command
The EDIT command prepares a view for modification.

EDIT view-name

view-name

Description Required. Identifies the name of the view to be edited.

Format Must be a valid view name.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

General considerations

♦ When you issue the EDIT command, the system first searches for a
virtual view. If it is not found, the system then searches the Directory.

♦ Once you issue the EDIT command, you can use the line-number
command (see “line-number command” on page 189) to modify your
view.

♦ The EDIT mode is automatically entered after a COPY, DEFINE, or
LIST command.

Example This example prepares the view CUSTOMER for modification.
EDIT CUSTOMER

Chapter 5 Defining and testing views using DBAID

166 P25-8220-45

ERASE command
The ERASE command causes DBAID to issue an automatic RDM
RESET whenever an "X" FSI is returned from an RDML command. This
command is the opposite of the KEEP command.

ERASE

Using DBAID commands

RDM Administration Guide 167

FIELD-DEFN command
The FIELD-DEFN command displays the full description of columns in a
view.

FIELD-DEFN [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid and opened view.

Considerations

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions for all your opened views.

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

column-name

Description Optional. Identifies the column whose description is to be displayed.

Considerations

♦ The column must already be part of the view.

♦ If you use this parameter, you must have specified a view name.

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptors for each column of the specified view or all virtual
views, one at a time.

Chapter 5 Defining and testing views using DBAID

168 P25-8220-45

Example This example displays the full description of all columns in all open views.
See the following table for an explanation of each column descriptor.

> FIELD-DEFN
VIEW-NAME (+) CUSTOMER
FIELD-NAME (+) CUSTOMER-NUMBER
FIELD-POS (+) 0
FIELD-LEN (+) 5
ASI-POS (+) 60
FIELD-DEC (+) 0
OUTPUT-LEN (+) 5
MASK-LEN (+) 15
FORMAT (+) Z
EDIT-MASK (-)
HEADING (-)
DELETABLE (+) Y
INSERTABLE (+) Y
REPLACEABLE (+) N
FIELD-LVL (+) 0
KEY-NUMBER (+) 1
REQUIRED (+) Y
UNIQUE (+) Y
EDIT-TRANS (-)
ORDERING (-)
SIGNED (+) N

Using DBAID commands

RDM Administration Guide 169

Column descriptor Explanation
VIEW-NAME The name of the view being described.
FIELD-NAME The name of the column being described.
FIELD-POS The position of the column in the user's buffer, starting

at byte 0.
FIELD-LEN The length of the column in bytes.
ASI-POS The position of the ASI of this column in the user

buffer.
FIELD-DEC The number of decimal places in the column.
OUTPUT-LEN The length of the output column.
MASK-LEN The length of the edit mask.
FORMAT The format of the column.
EDIT-MASK Not implemented for this release.
HEADING Not implemented for this release.
DELETABLE Indicates whether the row may be deleted.
INSERTABLE Indicates whether the row may be inserted.
REPLACEABLE Indicates whether this column may be updated.
FIELD-LVL Indicates the level of the row which contains this

column.
KEY-NUMBER Indicates which key column this is; 0 indicates the

column is not a key, 1 is the first key, and so on, up to
9.

REQUIRED Indicates the column must not be null when performing
updates or inserts.

UNIQUE Indicates the column is a unique key.
EDIT-TRANS Not implemented for this release.
ORDERING Indicates a linkpath is ordered using this column.
SIGNED Whether or not the column is signed.

Chapter 5 Defining and testing views using DBAID

170 P25-8220-45

FIELD-TEXT command
The FIELD-TEXT command displays the comments for a column in a
view.

FIELD-TEXT [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid and opened view.

Considerations

♦ If you omit this parameter, the FIELD-TEXT command displays the
short and long text for all of your opened views.

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

column-name

Description Optional. Identifies the column whose text is to be displayed.

Considerations

♦ The column must already be part of the view.

♦ If you use this parameter, you must specify a view name.

♦ If you omit this parameter, the FIELD-TEXT command displays the
comments for all columns.

Using DBAID commands

RDM Administration Guide 171

Example This example displays the comments for all columns in all open views:

>FIELD-TEXT
!! VIEW NAME ! FIELD NAME !
!-------------------------------!------------------------------!
!STOCK -!STOCK-QUANTITY !
!-------------------------------!------------------------------!
! COMMENTS !
!--!
!The total amount of inventory for the product at this branch location. !
..
MORE
>

! VIEW NAME ! FIELD NAME !
!------------------------------!------------------------------!
!STOCK !STOCK-BIN-LOCATION !
!------------------------------!------------------------------!
! COMMENTS !
!--!
!The specific bin location in which the product can be found. !
..
MORE>

Chapter 5 Defining and testing views using DBAID

172 P25-8220-45

FORGET command
The FORGET command removes the specified mark and its resources
from the list of marks in use. It also clears the name and resources
allocated by a previous MARK command.

FORGET mark-name

mark-name

Description Required. Specifies what mark information should be forgotten.

Format 1–30 alphanumeric characters.

Consideration Must be a name you assigned with the MARK command.

General consideration

 Once you issue a FORGET command, the indicated mark is released
and cannot be used without issuing a new MARK command.

Using DBAID commands

RDM Administration Guide 173

GET command
The GET command retrieves and displays a row for the indicated view.

GET

NEXT
LAST
SAME
FIRST
PRIOR

 view-name

 [FOR UPDATE]

 [AT mark-name]

 [USING literal1[literal2...literaln]]

Chapter 5 Defining and testing views using DBAID

174 P25-8220-45

NEXT
LAST
SAME
FIRST
PRIOR

Description Optional. Specifies the order of retrieval of rows.

Default NEXT. If no current position exists, NEXT defaults to FIRST.

Considerations
♦ For a unique key:

- GET NEXT. Retrieves either the row immediately after the
current row or the first row if no current position exists.

- GET LAST. Retrieves the last row.

- GET SAME. Retrieves the latest row if a current position exists.

- GET FIRST. Retrieves the first row in the view.

- GET PRIOR. Retrieves either the row immediately before the
current row, or the last row if no current position exists. Use GET
PRIOR only in connection with a "USING key-value" phrase for
predictable results.

♦ If you are accessing the data set via a secondary key that supports
REVERSE DIRECTIONAL search, you can use GET PRIOR.

♦ For a non-unique key:

- GET NEXT. Retrieves the next occurrence of the row within the
generic group immediately after the current row, or the first row if
no current position exists.

- GET LAST. Retrieves the last occurrence of the row.

- GET SAME. Retrieves the latest row if a current position exists.

- GET FIRST. Retrieves the first occurrence of the row with the
indicated key.

- GET PRIOR. Performs a read reverse within the group of
non-unique keyed rows.

♦ For RMS, GET LAST and GET PRIOR are not supported. To access
base RMS data sets, supply the key.

Using DBAID commands

RDM Administration Guide 175

view-name

Description Required. Specifies the view to be used.

Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

FOR UPDATE

Description Optional. Allows you to lock out other users' modifications to the row you
are retrieving.

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications
dependent upon the current contents of the row.

♦ If you do not need to be certain of the content of the row, use GET
without the FOR UPDATE phrase. When the UPDATE or DELETE
function is performed, automatic record holding performs the lock
before modifying the row.

♦ FOR UPDATE locks all physical resources until the row(s) are
released by a COMMIT or RESET. Automatic COMMITs are issued
on GET, INSERT, UPDATE, and DELETE, unless you have disabled
it (see SURE) with a CAUTIOUS command. This practice can lead
to system inefficiency and other tasks receiving a HELD status.

AT mark-name

Description Optional. Repositions a view previously marked with the MARK
command.

Consideration If you use the AT phrase, you cannot also use the USING phrase.

Chapter 5 Defining and testing views using DBAID

176 P25-8220-45

USING literal1[literal2...literaln]

Description Optional. Identifies a value or set of values to be used for a keyed GET.

Format The values must be part of a valid view. Use either character,
hexadecimal, or numeric data. Character and hexadecimal data must be
enclosed in quotes, numeric data need not be, for example:

♦ USING 'ABCD' - character data

♦ USING 1234 - numeric data

♦ USING X'A10C' - hexadecimal

♦ USING 123 'ABC' - combination (two keys)

Considerations
♦ The number of keys specified in the GET statement must be less

than or equal to the number of keys in your specified column
definition. No more than nine keys are allowed in one view.

♦ Any omitted keys are treated as generic keys. Using generic keys is
a convenient feature for allowing both direct access to a view and a
sequential scan of many rows. All occurrences of a particular
unspecified column are returned as long as the other keys are
satisfied.

♦ You can force RDM to perform a generic read at the PDM level by
omitting characters from the right of the key value, and replacing
them with one of the wildcard characters:

* default character for equal or next match

= default character for equal or only match

Generic reads are more efficient at the PDM level than at the RDM
level.

Note that you can specify your own wildcard characters by defining
the logical name CSI_WILD_EQ to point to the equal/next wildcard
character, and CSI_WILD_EN to point to the equal only wildcard
character. Refer to the SUPRA Server PDM System Administration
Guide (VMS), P25-0130.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column definition. You can omit
keys only to the right; you cannot skip a key, then give others after it.

♦ If you use the USING phrase, you cannot also use the AT phrase.

Using DBAID commands

RDM Administration Guide 177

Examples

♦ This example returns the row whose key starts with the letters JO
from the view LASTNAME. No position is specified, so NEXT is
assumed. However, because this is the first GET, the first row with
this key is returned.

 GET LASTNAME USING 'JO*'

♦ This example returns the next row with the key JONES. When you
have read all JONES's records, you get the message
"OCCURRENCE NOT FOUND":

 GET * USING 'JONES'

♦ This example returns the first JONES with the initials APQ:
 GET * USING 'JONES' 'APQ'

♦ This example uses the default NEXT. The next row is returned—for
example, the row following JONES APQ. You can use this command
repeatedly to get all rows in a view, such as the rest of the Joneses,
then all Robinsons, and so on:

 GET *

♦ In this RMS example, GET retrieves data from the ORDR data set
using the first physical key:

 GET FIRST ORDER-VIEW USING 225600x100

♦ This RMS example uses the view REGION with the GET command
to retrieve data from the REGN data set:

 KEY REGION-NUMBER = REGION-ID

 REGION-NAME

 ACCESS REGN
 WHERE REGION-ID = REGION-NUMBER
 ALLOW ALL

 * To restrict deletions of REGIONs that contain branches.

 ACCESS BRAN
 WHERE BRANCH-REGION-ID == REGION-ID

REGION-ID and BRANCH-REGION-ID are in different domains so
that BRANCH-REGION-ID can be NULL. Therefore, domain
override is required.

Chapter 5 Defining and testing views using DBAID

178 P25-8220-45

♦ In this example, the physical key of the data set SAMP consists of
three subparts. RDM performs a generic read when the application
program supplies a value for either or for a combination of SAMPLE-
KEY1 and SAMPLE-KEY2:

 GET SAMPLE-VIEW USING CUST01

 GET SAMPLE-VIEW USING CUST01 ORDR02

♦ All products for the requested order are returned when the values for
SAMPLE-KEY1and SAMPLE KEY2 are supplied. The GET
command uses the full physical key if all three logical keys are
supplied:

 GET SAMPLE-VIEW USING CUST01

 ORDR02

 PART11

♦ This RMS example is similar to the preceding example. However,
SAMPLE-KEY-2 is left out of the USING phrase to force a generic
read of the SAMP data set:

 GET SAMPLE-VIEW USING CUST02

♦ Fields can be left out of the USING clause only from the right.
Generic reads can be performed from within RDM only if they are
based on the logical key supplied within the USING clause in the
ACCESS statements.

Using DBAID commands

RDM Administration Guide 179

GO command
The GO command issues a GET request based on a single key, followed
by a series of sweeping GET requests (the rows are displayed in a
tabular format).

GO NEXT
PRIOR

 view-name

 START

NEXT
LAST
SAME
FIRST
PRIOR
AT mark - name

 FOR number - of - rows

 []FROM
USING

 literal literal literal1 2 nK

NEXT
PRIOR

Description Optional. Specifies the positional modifier to be used in subsequent
retrievals after the initial access by the GET command.

Default NEXT

view-name

Description Required. Specifies the view to be accessed.

Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

Chapter 5 Defining and testing views using DBAID

180 P25-8220-45

START

NEXT
LAST
SAME
FIRST
PRIOR
AT mark - name

Description Optional. Specifies the GET command positional modifier to be used for
the initial access of the database.

Default FIRST if GO NEXT is specified

 PRIOR if GO PRIOR is specified

FOR number-of-rows

Description Optional. Indicates the number of rows (or number of GET NEXTs minus
1) to be performed.

Default 16,777,216

Format Integer value in the range 1–16,777,216.

Consideration GET NEXTs will be issued until the count is exhausted, or until the last
row is retrieved, whichever occurs first.

[]FROM
USING

 literal literal literal1 2 nK

Description Optional. Identifies the values used for a keyed GET.

Format Either character or numeric data. Character data, if it includes blanks,
must be enclosed in quotes; numeric data need not be.

Options FROM Key values are used only on the initial access; the scan
is unqualified.

USING Key values are used for both the initial access and the
subsequent scan.

Using DBAID commands

RDM Administration Guide 181

Considerations
♦ The number of keys specified in the GET statement must be less

than or equal to the number of keys in your specified column
definition. You can omit keys only to the right; you cannot skip a key,
then give others after it.

♦ Any omitted keys are treated as generic keys. Using generic keys
allows for both direct access to a view and a sequential scan of many
rows. All occurrences of a particular unspecified key are returned as
long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column definition.

General considerations

♦ The output is displayed in columns, where possible. If more data is
to be displayed than fits on a screen, DBAID will determine a different
format.

♦ After the GO command displays a page of rows (see “PAGESIZE
command” on page 198), the prompt ***MORE*** is issued. You can
continue the display on the next page after input of a blank line.

♦ At the end of the rows retrieved by GO, the prompt ***END*** is
issued.

♦ "FOR number-of-rows" is not recommended for online use because it
does not pause until the last screen.

♦ The GO command always looks ahead one row so it can determine
whether to display the ***MORE*** or ***END*** message. It can be
confusing if you issue a GET after the GO, because a row might
appear to be skipped.

Chapter 5 Defining and testing views using DBAID

182 P25-8220-45

Examples

♦ The command "GO VIEW START AT VIEW-MARK1 USING
(VIEW-KEY-VALUE)" issues the following sequence of RDM GET
commands until a not-found FSI is returned:

 GET VIEW AT VIEW-MARK1

 GET NEXT VIEW USING (VIEW-KEY-VALUE)

 GET NEXT VIEW USING (VIEW-KEY-VALUE)

 .

 .

 .

♦ The command "GO PRIOR VIEW START LAST FROM
(VIEW-KEY-VALUE)" issues the following sequence of RDM GET
commands until a not-found FSI is returned:

 GET LAST VIEW USING (VIEW-KEY-VALUE)

 GET PRIOR VIEW

 GET PRIOR VIEW

 .

 .

 .

Using DBAID commands

RDM Administration Guide 183

INSERT command
The INSERT command issues an RDM INSERT request. The INSERT
places a row in the physical database based on the relative location
specified.

INSERT
NEXT
LAST
FIRST
PRIOR

 view-name [MASS]

NEXT
LAST
FIRST
PRIOR

Description Optional. Specifies where the row will be inserted in relation to existing
rows. The view definition may override this specification.

Default NEXT If not positioned in the view, NEXT defaults to LAST, and
PRIOR defaults to FIRST.

Options For non-unique key values:

NEXT Places a row after the current row. If no current position
exists, the row is placed in the last position in the view.

LAST Places a row in the last position of the view.
FIRST Places a row in the first position in the view.
PRIOR Places a row before the current row. If no current

position exists, the row is placed in the first position in
the view.

view-name

Description Required. Specifies the name of the view where you want the rows
inserted.

Format Must be a valid and opened view.

Considerations
♦ You can enter * instead of a view name, causing DBAID to substitute

the last view name used.

♦ After the column values are entered, the row is displayed. The
message INSERT (Y/N) is displayed and a response is required. Y
inserts the rows. N cancels the insert.

Chapter 5 Defining and testing views using DBAID

184 P25-8220-45

MASS

Description Optional. Inserts many rows.

Considerations

♦ The positioning parameter you specify is used by RDM on every
insert command issued by mass insert.

♦ Rows are input immediately following this command after the
prompts MASS INSERT PROCESSING INITIATED and ENTER
"END." TO EXIT MASS INSERT.

♦ Rows are inserted as flat records. Separate the columns with
commas. To insert rows that are longer than one line, terminate the
list of values with a comma.

♦ If columns have no values, enter two consecutive commas to indicate
their absence. This value is treated as a null value for packed or
numeric columns, as a large number for binary columns, and as
blanks for character columns.

♦ If columns contain single quotes (apostrophes), replace them with
two single quotes (not double quotes) and enclose the entire string in
single quotes. If columns contain spaces, enclose the entire string in
single quotes.

♦ Specify "END." after you input all rows to be inserted into the view.

♦ To place multiple rows on a single line, leave a blank between rows.
Do not specify the view name while doing a mass insert.

♦ Processing stops if ten errors are detected while using MASS insert;
otherwise, enter "END." to terminate inserting.

Using DBAID commands

RDM Administration Guide 185

General considerations

♦ If you use INSERT without MASS, DBAID prompts you for values
even if the view does not allow inserts.

♦ Quotes can be used to include blanks in character strings.

Examples The following examples use INSERT in an online environment. The >
indicates user input.

♦ This example inserts a row in the physical database:

>INSERT *
NUMBER
>9998
PRODUCT
>AAAA
INSTALLED
>100893

NUMBER () 9998
PRODUCT () AAAA
INSTALLED () 100893
INSERT (Y/N)?
>Y
FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

Chapter 5 Defining and testing views using DBAID

186 P25-8220-45

♦ These examples use MASS to insert one or more rows without
reference to column names. Use a blank to indicate the end of an
inserted row. You can also enter one or more rows per line, using a
comma to carry part of a row to the next line. Use END. to stop
mass inserting:

>INSERT * MASS
MASS INSERT PROCESSING INITIATED.
ENTER "END TO EXIT MASS INSERT.
>9997,BBBB,100793
FSI: * VSI + MSG: SUCCESSFUL COMPLETION

>9996,CCCC,
>100683
FSI * VSI: + MSG: SUCCESSFUL COMPLETION
>9995,DDDD,100593 9994,EEEE,100493 9993,FFFF,100393
FSI * VSI: + MSG: SUCCESSFUL COMPLETION
FSI * VSI: + MSG: SUCCESSFUL COMPLETION
FSI * VSI: + MSG: SUCCESSFUL COMPLETION
>END.
MASS INSERT PROCESSING COMPLETED.

♦ In this example, the following view is used with the INSERT
command. An insert is attempted on each data set. If at least one
row is inserted, the operation is successful.

 BRANCH-STOCK-PRODUCT

 KEY BRANCH-NUMBER = BRANCH-ID

 KEY PRODUCT-CODE = STOCK-PRODUCT-ID = PRODUCT-ID

 PRODUCT-DESCRIPTION

 ACCESS BRAN

 WHERE BRANCH-ID = BRANCH-NUMBER

 ALLOW ALL

 ACCESS STCK

 WHERE STOCK-BRANCH-ID = BRANCH-ID

 ALLOW ALL

 ACCESS PROD

 WHERE PRODUCT-ID = STOCK-PRODUCT-ID

 ALLOW ALL

Using DBAID commands

RDM Administration Guide 187

♦ This example shows how to prohibit an insert on a particular view by
not coding INS or ALL on the ALLOW clause. In this example,
whether or not the PROD row exists, the ORDR row is not inserted.
If the row exists, a message indicating that an invalid value is in a
required column appears, and an ASI of V is returned on the key
columns.

 BRANCH-STOCK-PRODUCT

 KEY BRANCH-NUMBER = BRANCH-ID

 KEY PRODUCT-CODE = STOCK-PRODUCT-ID = PRODUCT-ID

 PRODUCT-DESCRIPTION

 ACCESS BRAN

 WHERE BRANCH-ID = BRANCH-NUMBER

 ALLOW ALL

 ACCESS STCK

 WHERE STOCK-BRANCH-ID = BRANCH-ID

 ALLOW ALL

 ACCESS PROD

 WHERE PRODUCT-ID = STOCK-PRODUCT-ID

 ALLOW DEL

Chapter 5 Defining and testing views using DBAID

188 P25-8220-45

KEEP command
The KEEP command disables the DBAID automatic RESET feature
specified with the ERASE command. This command is the opposite of
the ERASE command. KEEP prohibits DBAID from issuing a RESET
when it receives an FSI of "X" from the view. Instead, DBAID "keeps" the
database as it is and allows the user to decide whether to RESET or not.

KEEP

General considerations

♦ KEEP is the default.

♦ KEEP does not affect the RESET that may be issued to the SUPRA
Server Directory database, SUPRAD, by the DBAID systems
commands (REMOVE, SAVE, BIND, PERMIT, and DENY) when an
error occurs.

Using DBAID commands

RDM Administration Guide 189

line-number command
The line-number command deletes, adds, or replaces a Data Definition
Language (DDL) statement in the currently editable view.

line-number [ddl-statement]

line-number

Description Required. Indicates the number of the line to be deleted, added, or
replaced.

Format 1–4 numeric characters.

Consideration If the line number is less than four digits, DBAID adds zeroes to the front
of the number. For example, 10 becomes 0010. If the number is longer
than four digits, it is shortened to the first four digits.

ddl-statement

Description Optional. Specifies the view definition statement to be added or
replaced.

Format Must be a valid DDL statement.

Consideration If the line-number is used without a following ddl-statement line, the line
is deleted from the view definition.

General considerations

♦ Before you can use this command, you must first issue a COPY,
DEFINE, EDIT, or LIST command.

♦ You can enter a maximum of 200 lines in DBAID for a single view.

Example This example illustrates the use of various line-number commands:
>LIST VIEW1
 10 CUSTOMER-NUMBER
 20 CUSTOMER-ADDRESS
 30 CUSTOMER-PHONE-NUMBER
 40 ACCESS CUST
>10 KEY CUSTOMER-NUMBER Replaces line 10
>15 CUSTOMER-NAME Inserts line 15
>30 Deletes line 30
>LIST VIEW1
 10 KEY CUSTOMER-NUMBER
 15 CUSTOMER-NAME
 20 CUSTOMER-ADDRESS
 40 ACCESS CUST

Chapter 5 Defining and testing views using DBAID

190 P25-8220-45

LINESIZE command
The LINESIZE command specifies the number of characters to be
displayed on a line or displays the current line-size setting.

LINESIZE [number-of-characters]

number-of-characters

Description Optional. Indicates the number of characters to be displayed on a line.

Default 77

Options 12-256

Consideration If you omit this parameter, the command displays the current LINESIZE
setting.

Using DBAID commands

RDM Administration Guide 191

LIST command
The LIST command displays a saved or virtual view and readies it for
modification.

LIST view-name

view-name

Description Required. Identifies the view to be displayed.

Format Must be a valid view.

Considerations

♦ If the view is not a virtual view, DBAID searches the Directory for the
view text, as long as the view is not opened.

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

Chapter 5 Defining and testing views using DBAID

192 P25-8220-45

General considerations
♦ The SUPRA Server Directory database, SUPRAD, is not available

when the logical definition CSI_NODIRECTORY is defined as TRUE.

♦ Once you issue the LIST command, you can use the line-number
command (see “line-number command” on page 189) to modify your
view.

♦ If a LIST command returns the message "NO VIEW TEXT SINCE
VIEW IS NOT VIRTUAL," the view was opened during the current
session without first being listed using either the LIST command or
the DEFINE command (see “DEFINE command” on page 161). To
correct, do a RELEASE, then UNDEFINE, and then LIST. The view
must be opened again to execute it.

♦ LIST automatically issues an EDIT (see “EDIT command” on
page 165).

♦ Using LIST before OPEN reads the text for the view definition from
the Directory without verifying that the DBAID user is related to the
view.

♦ DBAID can create views when you enter text with COPY, DEFINE,
EDIT, or LIST. If LIST is used on a view in the Directory, the text
becomes a virtual view which DBAID can modify. Virtual views
enable you to open a view without relating it to a user.

♦ This command can be used only by users with a Directory access
authority of PRIVILEGED (PRIV) or DBA/UTILITIES (DA).

Example The following lists the view BRANCHES-IN-REGION:
KEY REGION-NUMBER

 REGION-NAME

KEY BRANCH-NUMBER

 BRANCH-NAME

ACCESS REGION

 ONCE
 USING REGION-NUMBER

ACCESS BRANCH
 WHERE BRANCH-REGION = REGION-NUMBER

 ALLOW INSERT UPDATE

Using DBAID commands

RDM Administration Guide 193

MARK command
The MARK command marks the current position of the row established
by the previous GET command.

MARK view-name AT mark-name

view-name

Description Required. Identifies the view name established by the previous GET
command.

Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

AT mark-name

Description Required. Assigns a name to the location where the position of the
current view will be marked.

Format 1–30 alphanumeric characters.

Consideration The name assigned is the name you use in a later GET AT request to
retrieve this row.

General considerations

♦ The AT clause in the GET command repositions the view at the
position set by the MARK command.

♦ You can create any number of marks for a logical user view, but to
conserve space, reuse marks when possible.

Example This example marks the current position of the row:
>MARK CUSTOMER AT REMEMBER-CUSTOMER

You can do other GETs on CUSTOMER and return to this mark
immediately.

Chapter 5 Defining and testing views using DBAID

194 P25-8220-45

MARKS command
The MARKS command lists all open MARKs and the views they are
marking.

MARKS

Example This example lists all open marks and the views (CUSTOMER-PROD)
they are marking:

>MARKS

 MARK NAME VIEW NAME
MARK6 CUSTOMER-PROD
MARK5 CUSTOMER-PROD
MARK4 CUSTOMER-PROD
MARK3 CUSTOMER-PROD

Using DBAID commands

RDM Administration Guide 195

OPEN command
The OPEN command readies a saved or virtual view for use by DBAID.

OPEN [user-view-name=]view-name[column1,...,columnn]

user-view-name=

Description Optional. Gives an existing view a name to be used in DBAID.

Format 1–30 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you omit this parameter, the view name is used.

♦ Use this command with the column parameter to create many
smaller user views from one common view.

♦ To open a view that is not listed or defined in the same session of
DBAID, the user must be related to the view in the Directory or the
Global View file, if any.

Chapter 5 Defining and testing views using DBAID

196 P25-8220-45

view-name

Description Required. Identifies the virtual or stored view to be readied for use.

Format Must be a valid view.

Considerations

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

♦ The LIST command makes view text available to DBAID. If you
issue an OPEN command on a view instead of issuing a LIST
command, RDM directly opens the view without making text
available to DBAID. When RDM opens the view, it checks for a
global version first, then checks for a bound version if no global
version exists. If neither a global nor a bound version exists, RDM
opens the copy of the view stored on the Directory. This will affect
you if your view text differs from the global or bound version.

If the logical CSI_NODIRECTORY is defined as TRUE, you will not
be able to access the SUPRA Server Directory database SUPRAD.

♦ If a virtual view was released, you must undefine and reopen the view
with full specification.

Using DBAID commands

RDM Administration Guide 197

column1,...,columnn

Description Optional. Identifies the column(s) to be included in the user view.

Considerations

♦ The columns must already be part of the view being opened.

♦ You can continue the list of column names on successive lines by
ending the current line with a comma. This will be necessary if the
current line size is less than the space required to enter all columns
in the row.

♦ The USER-LIST command displays the list of columns used to open
the view.

General consideration

♦ OPEN returns the following message, containing information about
the storage used:

 nnnnn BYTES USED IN OPENING VIEW

 where nnnnn is the amount of storage used by the view.

Example This example opens the user view CUSTOMER-BRANCH-ONLY. The
view comprises a subset of all columns in the base view CUSTOMER.
>OPEN CUSTOMER-PRODUCT-ONLY = CUSTOMER CUSTOMER-NUMBER,CUSTOMER-
BRANCH

Only CUSTOMER-NUMBER and CUSTOMER-BRANCH are returned by
GET CUSTOMER-BRANCH-ONLY, even though CUSTOMER has 10
columns defined.

Chapter 5 Defining and testing views using DBAID

198 P25-8220-45

PAGESIZE command
The PAGESIZE command specifies the number of lines to be displayed
on a screen/page or displays the current page-size setting.

PAGESIZE [number-of-lines]

number-of-lines

Restriction The value must be greater than 10.

Description Optional. Indicates the number of lines to be displayed on a
screen/page.

Format 2 or more numeric characters.

Consideration If you omit this parameter, the command displays the current page-size
setting.

General consideration

 The initial page size is 24 lines.

Using DBAID commands

RDM Administration Guide 199

PERMIT command
The PERMIT command relates a view to a user(s) on the Directory. This
command provides security since it allows the DBA to define user-to-view
authorization through DBAID.

PERMIT view-name user-name1 [...user-namen]

view-name

Description Required. The name of the view that you are relating to a user.

Format Must be a valid view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

user-name1 [...user-namen]

Description Required. Specifies the name of the user you are relating to the view on
the Directory.

Format Must be a valid user ID, defined on the Directory.

Consideration You can specify more than one user in a single PERMIT command by
separating each user name with a single space.

General considerations

♦ The DBAID PERMIT command can be used instead of the Logical
View User Authorization screen in the DBA utility.

♦ After successfully relating the view to each user, DBAID issues a
COMMIT to the Directory database SUPRAD.

♦ If an error occurs while relating a user, DBAID issues a RESET to the
Directory database SUPRAD and terminates processing of the
command.

Chapter 5 Defining and testing views using DBAID

200 P25-8220-45

PRINT-STATS command
The PRINT-STATS command causes RDM to display the current
statistics for all opened views. You can issue the command numerous
times during a session after you have first issued a STATS-ON
command.

PRINT-STATS

General considerations

♦ The STATS-ON command must precede the first PRINT-STATS
command. If you do not first issue STATS-ON, PRINT-STATS has
no effect.

♦ You can issue a STATS-OFF command to discontinue statistics
gathering. The BYE and SIGN-OFF commands print statistics and
then turn statistics gathering off.

♦ The PRINT-STATS command can be used to keep a statistical
running total.

Example In the following example, PRINT-STATS is used to print statistics after
each RDML operation.
STATS-ON

GET NEXT BRANCH-LOCATION

 .

 .

PRINT-STATS

UPDATE BRANCH-LOCATION

 .

 .

PRINT-STATS

Using DBAID commands

RDM Administration Guide 201

RELEASE command
The RELEASE command issues an RDM RELEASE, which closes a
specific view or all views that are opened and releases the occupied
storage.

RELEASE [view-name]

view-name

Description Optional. Specifies the view to be released.

Format Must be a valid and opened view.

Considerations

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

♦ If you omit this parameter, all your opened views are released.

General considerations

♦ The definition of any view is retained, allowing subsequent retrieval
and processing.

♦ This command does not affect virtual view text of the view(s).

Chapter 5 Defining and testing views using DBAID

202 P25-8220-45

REMOVE command
The REMOVE command removes the view and the relationship between
it and the database from the Directory.

REMOVE view-name

view-name

Description Required. Specifies the view to be removed.

Format Must be a listed (LIST) or edited (EDIT) view.

Considerations

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

♦ DBAID displays the following prompt asking for confirmation:
"REMOVE EXISTING LOGICAL VIEW (Y/N?)."

General consideration

♦ You must list the view before removing it. This protects you from
inadvertently removing views due to spelling errors.

Example This example removes PRODUCT-VIEW from the Directory. The view is
still a virtual view in DBAID.
>REMOVE PRODUCT-VIEW

Using DBAID commands

RDM Administration Guide 203

RENUMBER command
The RENUMBER command renumbers a virtual view so the line
numbering starts at 10 with each line incremented by 10.

RENUMBER view-name

view-name

Description Required. Specifies the view to be renumbered.

Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

Chapter 5 Defining and testing views using DBAID

204 P25-8220-45

RESET command
The RESET command issues an RDM RESET request. A RESET rolls
back any database updates for the current user since the last COMMIT
point.

RESET

General considerations

♦ Only use RESET after unsuccessful updates. DBAID issues a
COMMIT after every successful update unless you have issued the
CAUTIOUS command.

♦ DBAID does not automatically issue a RESET command when an "X"
FSI is returned.

Using DBAID commands

RDM Administration Guide 205

SAVE command
The SAVE command stores on the Directory a virtual view that was
previously opened with an OPEN command.

SAVE view-name [BIND]

view-name

Description Required. Identifies the view to be stored on the Directory.

Format Must be a valid view-name.

Considerations
♦ The view must be created with COPY, DEFINE, EDIT, or LIST.

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

♦ The view must be a virtual view, and it must be opened.

BIND

Description Optional. Indicates you want to bind the view.

Consideration You can bind a view only if it is in the active database.

Chapter 5 Defining and testing views using DBAID

206 P25-8220-45

General considerations
♦ If the view being saved already exists, the system asks if you want to

replace the existing view. If so, the new view replaces the old view
on the Directory. This does not affect who can use the view.

♦ If the view did not exist previously, it must be related to users before
it can be accessed by the application program.

♦ You cannot save a view that contains physical data items in the
column definition. For example, the following view cannot be saved
because CUSTCTRL is a physical data item.

 KEY CUSTCTRL
 ACCESS CUST USING CUSTCTRL

♦ However, the following view can be saved:
 KEY CUSTOMER-ID
 ACCESS CUST USING CUSTOMER-ID

♦ Physical data items can be used in the access definition.

Examples
♦ This example stores PRODUCT on the Directory:
 >SAVE PRODUCT

♦ This example stores PRODUCT on the Directory and binds the view:
 >SAVE PRODUCT BIND

Using DBAID commands

RDM Administration Guide 207

SHOW-NAVIGATION command
The SHOW-NAVIGATION command allows you to verify the accuracy of
the access paths used by RDM to access the underlying entities during a
view open.

SHOW-NAVIGATION [view-name]

view-name

Description Optional. Specifies the view for which you wish to display details of
access paths used.

Format Must be a valid and opened view.

Considerations

♦ You can enter * instead of a view name. DBAID returns information
on the last view name used.

♦ If you omit this parameter, RDM returns information on all opened
views in turn.

♦ Access methods include:

- INDEXED - via RMS alternate key or PDM secondary key

- KEYED - via control key

- LINKPATH - via a linkpath

- SCAN - via a sequential scan

- RDML GET - via view-to-view access

Example The following example shows the access path used the view
REGION-BY-NAME. REGION-BY-NAME is a base view because it
accesses a data set, REGN, through the secondary index key
REGNSKNM.

>SHOW-NAVIGATION REGION-BY-NAME

 VIEW NAME : REGION-BY-NAME !

LVL! ACCESSED FILE/VIEW NAME ! ACCESS METHOD ! ACCESS PATH NAME !
---!-----------------------------!---------------!------------------!
!0 ! REGN ! INDEXED ! NAME !

Chapter 5 Defining and testing views using DBAID

208 P25-8220-45

SIGN-OFF command
The SIGN-OFF command signs off the user from DBAID.

SIGN-OFF

General consideration

 Use the SIGN-OFF command to remove yourself as a user without
terminating DBAID.

Using DBAID commands

RDM Administration Guide 209

SIGN-ON command
The SIGN-ON command identifies the user to DBAID.

SIGN-ON user-name [password]

user-name

Description Required. Indicates the name of the user.

Format 1–30 alphanumeric characters. Must be a valid user name already
defined on the Directory.

password

Description Optional. Indicates the user's password.

Format 1–8 alphanumeric characters. Must be a valid password already defined
on the Directory.

Consideration To SIGN-ON as another user during a DBAID session, you must first
issue a SIGN-OFF.

General consideration

 When you invoke DBAID, you effectively issue a SIGN-ON.

Example This example identifies Jane Doe to DBAID:
>SIGN-ON JDOE DBAPSWD

Chapter 5 Defining and testing views using DBAID

210 P25-8220-45

STATS command
The STATS command causes RDM to display the current statistics for all
open views or for a view that you specify. You can issue the STATS
command numerous times during a session after you issue a STATS-ON
command.

STATS [view-name]

view-name

Description Optional. Specifies the view for which you wish to display statistics.

Format Must be a valid and opened view.

Consideration You can enter an * instead of a view name, causing DBAID to substitute
the last view name used.

General considerations

♦ The STATS-ON command must precede the first STATS command.
If you do not first issue STATS-ON, STATS has no effect.

♦ You can issue a STATS-OFF to discontinue statistics gathering.

♦ When you issue STATS, the statistics are displayed on your screen.

♦ You can issue STATS-OFF followed by STATS-ON, or just
STATS-ON to reset the statistical information.

♦ The STATS command can be used to keep a statistical running total.

Example In the following example, STATS is used to display a running total after
each RDML operation.
STATS-ON

GET NEXT STOCK

 .

 .

 .

STATS

UPDATE STOCK

 .

 .

STATS

Using DBAID commands

RDM Administration Guide 211

STATS-OFF command
The STATS-OFF command causes RDM to print the current statistics.
After the statistics are printed, they are displayed.

STATS-OFF

General considerations

♦ The STATS-ON command must precede the STATS-OFF command.

♦ Issuing a STATS-OFF command without a preceding STATS-ON
command has no effect.

♦ The BYE or SIGN-OFF commands also perform a STATS-OFF
command.

Chapter 5 Defining and testing views using DBAID

212 P25-8220-45

STATS-ON command
The STATS-ON command causes RDM to initialize the statistics to zero
and then begin gathering statistics. The DBA can use this command, in
conjunction with the STATS-OFF or PRINT-STATS commands, to
examine what user views do on both a logical and physical level.

STATS-ON

General considerations

♦ Statistics are gathered on a task basis, not on a system-wide basis.

♦ Use the STATS-OFF command to print statistics and then turn them
off.

♦ Use the PRINT-STATS command to print statistics, but continue
gathering a running total.

♦ You can use the BYE and SIGN-OFF commands to print statistics
and then turn them off.

Using DBAID commands

RDM Administration Guide 213

SURE command
The SURE command causes a COMMIT after each successful insert,
update or delete. The SURE command is the opposite of the CAUTIOUS
command; SURE causes RDM to automatically issue a COMMIT if an "*"
FSI is returned by a RDML command that alters the database.

SURE

General consideration

 This is the default setting.

Chapter 5 Defining and testing views using DBAID

214 P25-8220-45

UNDEFINE command
The UNDEFINE command removes the name and definition of a virtual
view.

UNDEFINE ALL
view - name

ALL
view - name

Description Required. Specifies which virtual views to remove.

Options ALL Removes all virtual views currently in use and issues an
RDM RELEASE.

view-name Identifies the virtual view to be removed. This must be a
valid view.

Consideration You can enter * instead of view name, causing DBAID to substitute the
last view name used.

General considerations

♦ Storage being used by the view is relinquished, allowing it to be
reclaimed for defining other views.

♦ This command does not remove a saved definition from the
Directory.

Examples

♦ This example removes all views currently in use:
 >UNDEFINE ALL

♦ This example removes the view CUSTOMER:
 >UNDEFINE CUSTOMER

Using DBAID commands

RDM Administration Guide 215

UPDATE command
The UPDATE command updates data values in the database. For RMS
data sets, it also updates the relationships between files.

UPDATE view-name [column1:=literal1[,...,columnn:=literaln]]

view-name

Description Required. Identifies the view you wish to update.

Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

column1:=literal1[,...,columnn:=literaln]

Description Optional. Identifies a column in the view which is to have the value of the
literal.

Format column The column must already be part of the view being
updated.

:= Must be coded as shown.

literal Character or numeric data. A hexadecimal value is not
allowed.

Chapter 5 Defining and testing views using DBAID

216 P25-8220-45

Considerations

♦ Each updateable column is displayed, and replacement values are
accepted. Entering a null line does not change the column. Entering
new data changes the column value in the row. After all updateable
columns are processed, the prompt "UPDATE (Y/N)" displays and
requires a response.

♦ You can use the "column:=literal" syntax when updating columns in
the row. Only the columns you specify are updated; all others remain
the same. To update a row, indicate the column you want to update,
the :=, and the new value for the column.

♦ Single quotes are not required around character or numeric literals
unless the literal contains spaces or commas.

♦ Single quotes are required for you to change the value of a column to
blanks. A literal of spaces (keyed in) must be in single quotes. If you
press RETURN, you do not affect the item's value.

♦ You cannot use the UPDATE function to modify columns designated
as key values. Use the DELETE and INSERT commands to modify
key items. See “DELETE command” on page 162 and “INSERT
command” on page 183.

♦ In order to UPDATE a row, you must first retrieve the row using the
GET command.

♦ UPDATE cannot change all the values in a defined column to a
specific value. For example, you could not change all
PROD-CODES to 'T100,' even if you wanted to.

♦ If the physical field being updated is an alternate key for RMS data
sets, RDM maintains the secondary index in the same file as the
primary index.

Using DBAID commands

RDM Administration Guide 217

Example This example updates the columns STOCK-QUANTITY and STOCK-
BIN-LOCATION in the view STOCK:
 >UPDATE STOCK STOCK-QUANTITY:=25, STOCK-BIN-LOCATION:=A3

If an alternate index is defined for the above view, RDM performs the
update as follows:

♦ Before deleting the row from the DATE data set, RDM checks to see
if any rows in the ORDR data set have the old value.

♦ If so, the delete is not performed on the DATE data set. RDM then
attempts to insert the new value into the DATE data set.

♦ If a duplicate occurrence is found, the error is ignored.

Chapter 5 Defining and testing views using DBAID

218 P25-8220-45

USER-LIST command
The USER-LIST command displays the column definition for the user
view named.

USER-LIST user-view-name

user-view-name

Description Required. Identifies the user view or view to be displayed.

Format Must be a valid view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

Example This example displays the list of columns for the B1 user view:
>OPEN B1=BRANCH BRANCH-NUMBER,BRANCH-ADDRESS,BRANCH-CITY,BRANCH-
STATE

FSI: * VSI: = MSG: 4600 BYTES USED IN OPENING VIEW.

>USER-LIST B1

USER VIEW NAME : B1

LOGICAL VIEW NAME : BRANCH

USER VIEW LIST :

BRANCH-NUMBER,BRANCH-ADDRESS,BRANCH-CITY,BRANCH-STATE,END.

Using DBAID commands

RDM Administration Guide 219

VIEW-DEFN command
The VIEW-DEFN command displays a condensed description of a view.

VIEW-DEFN [view-name]

view-name

Description Optional. Specifies the view whose condensed description is to be
displayed.

Format Must be a valid and opened view.

Considerations

♦ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

♦ If you omit this parameter, a condensed description of all your
opened views displays.

Chapter 5 Defining and testing views using DBAID

220 P25-8220-45

Example This example displays a condensed description of the CUSTOMER view.
The following table explains each displayed descriptor.

>VIEW-DEFN
VIEW-NAME (+) CUSTOMER
INS-ORDER (+) N
TOTAL-SIZE (+) 63
TOTAL-FIELDS (+) 3
TOTAL-LEVELS (+) 1
TOTAL-DELETABLE (+) 3
TOTAL-INSERTABLE (+) 3
TOTAL-REPLACEABLE (+) 3
TOTAL-REQUIRED (+) 1
TOTAL-KEYS (+) 1
TOTAL-NON-UNIQUE (+) 0

View descriptor Explanation
VIEW-NAME The name of the view being described.
INS-ORDER Indicates that inserts will be ordered,

depending on the value of a column.
TOTAL-SIZE The total number of bytes in the view,

including ASIs.
TOTAL-FIELDS The number of columns in the view.
TOTAL-LEVELS The number of levels in the view.
TOTAL-DELETABLE The number of deletable columns.
TOTAL-INSERTABLE The number of insertable columns.
TOTAL-REPLACEABLE The number of updateable columns.
TOTAL-REQUIRED The number of required columns.
TOTAL-KEYS The number of keys in the view.
TOTAL-NON-UNIQUE The number of non-unique keys in the

view.

Using DBAID commands

RDM Administration Guide 221

VIEWS command
The VIEWS command displays all views currently active in DBAID.

VIEWS

General consideration

 The information displayed with this command includes:

♦ User View - The name of the user view.

♦ Logical View - The name of the view this user view is part of.

♦ Status - Indicates whether the user view is opened or released.

Example This example displays all views currently active in DBAID:

>VIEWS

 USER VIEW LOGICAL VIEW STATUS
CUSTOMER-PURCHASE-ORDER CUSTOMER-PURCHASE-ORDER OPENED
PO-CODE-ONLY CUSTOMER-PURCHASE-ORDER OPENED

Chapter 5 Defining and testing views using DBAID

222 P25-8220-45

VIEWS-FOR-USER command
The VIEWS-FOR-USER command lists the views related to the
signed-on user together with the date and time of the most recent
view-save.

VIEWS-FOR-USER

General consideration

 The date and time are displayed in the format mm/dd/yy.

Example This example displays the views related to the signed-on user:

VIEWS-FOR-USER

! LOGICAL VIEW NAME ! DATE ! TIME !
!------------------------------!----------!------------!
! BASE-VIEW ! 08/22/96 ! 13:17:24 !
! REGION ! 08/22/96 ! 13:18:04 !
! BRANCH ! 08/22/96 ! 13:27:32 !
! CUSTOMER ! 08/22/96 ! 13:32:14 !
! PRODUCT ! 01/16/96 ! 12:49:04 !
! BRANCH-SUBSET ! 03/24/96 ! 15:12:24 !
! BRANCHES-IN-REGION ! 03/24/96 ! 15:17:58 !
! PRODUCTS-IN-REGION ! 03/24/96 ! 15:27:04 !
! REVIEW-DETAILS ! 01/16/96 ! 12:51:13 !
! WRITING-DETAILS ! 03/24/96 ! 15:33:18 !
! MANUALS ! 01/16/96 ! 12:51:59 !
! AUTHOR ! 01/16/96 ! 12:57:26 !
! PRODUCTION-DETAILS ! 01/16/96 ! 13:04:29 !

RDM Administration Guide 223

6
RDM status indicators

RDM returns status indicators to the application program and to the
DBAID user to indicate Relational Data Manipulation Language (RDML)
processing results. The indicators are the same, regardless of whether
the view is a base or derived view because base views pass the
indicators to derived views.

The three types of status indicators that are returned after any RDML
function call are as follows:

♦ Function Status Indicators indicate the success or failure of the
function.

♦ Column Attribute Status Indicators indicate the status of each column
in the row.

♦ Validity Status Indicators indicate the most severe column status
within the row.

Chapter 6 RDM status indicators

224 P25-8220-45

Function Status Indicators (FSIs)
Function Status Indicators (FSIs) reflect the success or failure of the
RDML function. The FSI is returned to the application to let the program
determine the next appropriate action. For MANTIS programs, refer to
your MANTIS documentation for more information on status indicators.
For FORTRAN, COBOL, or BASIC RDML applications, RDM returns the
FSI to an application program in an area generated as part of the
programmer-supplied ULT-CONTROL statement. The following two
examples are of this generation: one COBOL and one FORTRAN.

Examples
♦ COBOL. Note that the asterisk indicates the statement that the

programmer specifies in the source RDML program; the RDML
preprocessor for COBOL generates all other statements.
 * 01 INCLUDE ULT-CONTROL.
 01 ULT-CONTROL.
 10 ULT-OBJECT-NAME PIC X(30).
 10 ULT-OPERATION.
 15 ULT-OPCODE PIC X.
 15 ULT-POSITION PIC X.
 15 ULT-MODE PIC X.
 15 ULT-KEYS PIC X.
 10 ULT-FSI PIC X.
 10 ULT-VSI PIC X.
 10 FILLER PIC X(2).
 10 ULT-MESSAGE PIC X(40).
 10 ULT-PASSWORD PIC X(8).
 10 ULT-OPTIONS PIC X(4).
 10 ULT-CONTEXT PIC X(4).
 10 ULT-LVCONTEXT PIC X(4).

♦ FORTRAN. Note that the C indicates the statement that the
programmer specifies in the source RDML program; the RDML
preprocessor for FORTRAN generates all other statements.

C INCLUDE ULT-CONTROL
CHARACTER ULT_OBJECT_NAME*30,ULT_OPERATION*6,ULT_FSI*1,ULT_VSI*1,
+ULT_FILLER*2,ULT_MESSAGE*40,ULT_PASSWORD*8,ULT_OPTIONS*4,
+ULT_CONTEXT*4,ULT_LVCONTEXT*4
PARAMETER(ULT_CONTROL_LEN=100)
CHARACTER*(ULT_CONTROL_LEN) ULT_CONTROL
EQUIVALENCE (ULT_CONTROL(1:30),ULT_OBJECT_NAME(1:30))
+,(ULT_CONTROL(31:36),ULT_OPERATION(1:6)),(ULT_CONTROL(37:37),
+ULT_FSI(1:1)),(ULT_CONTROL(38:38),ULT_VSI(1:1))
+,(ULT_CONTROL(39:40),ULT_FILLER(1:2)),(ULT_CONTROL(41:80),
+ULT_MESSAGE(1:40)),(ULT_CONTROL(81:88),ULT_PASSWORD(1:8))
+,(ULT_CONTROL(89:92),ULT_OPTIONS(1:4)),(ULT_CONTROL(93:96),
+ULT_CONTEXT(1:4)),(ULT_CONTROL(97:100),ULT_LVCONTEXT(1:4))
CHARACTER*14 ULT_DATE_STAMP
DATA ULT_DATE_STAMP/'.19831114143849'/
C ON ERROR
C TYPE *,'RDM control call failed',ULT_FSI
C STOP
C END ERROR-HANDLER
*

Function Status Indicators (FSIs)

RDM Administration Guide 225

The FSIs have the following meanings:

FSI value Meaning
* SUCCESSFUL COMPLETION. The RDML function

completed successfully.
D DATA ERROR. The row contains invalid data. Check

the ASIs to see which column contains invalid data.
F FAILURE. The RDML function failed. Usually caused

by a physical database problem returned to RDM.
N NOT FOUND. The RDML processor cannot find an

occurrence of the requested row.
R DYNAMIC RESET. The PDM performed a dynamic

reset on the database because of an earlier PDM
failure. The PDM restarted automatically; however, you
must reapply all modifications made since the last
COMMIT or RESET.

S SECURITY CHECK. The attempted RDML function
violated a security constraint.

U UNAVAILABLE RESOURCE. The resource required to
complete this function was not available; for example,
the data set was not open.

X RESET RECOMMENDED. While processing, RDML
function modifications were made to the database
before the error condition was detected. Issue a
RESET to restore the database. This code overrides
D, F, S, or U indicators.

A message associated with the FSI is accessible in the ULT-MESSAGE
area for all returned indicators (see the preceding example).

Chapter 6 RDM status indicators

226 P25-8220-45

Column Attribute Status Indicators (ASIs)
Column Attribute Status Indicators (ASIs) reflect the status of each
column defined in a view. ASIs have a one-to-one mapping to each
column. In FORTRAN, COBOL, or BASIC RDML programs, they are
placed immediately after the last column in your view, for example:

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 ASI1 ASI2 ASI3 ASI4

You can access the ASIs through names generated by the RDML
preprocessor. During application program coding, the programmer
specifies an INCLUDE statement for the view required. The RDML
preprocessor generates definitions for all columns, followed by definitions
for an ASI for each column. The name of the ASI for a column is the
column name preceded by the four characters ASI-. The following two
examples are of this generation; one for COBOL and one for FORTRAN.

Examples

♦ COBOL. Note that the asterisk indicates the statement that the
programmer specifies in the source program; the RDML
preprocessor for COBOL generates all other statements.
* 01 INCLUDE CUST-CONTACT.

 01 LUV-CUST-CONTACT.

 10 CUST-CONTACT.

 20 CUST-NO PIC S9(05).

 20 CONTACT-NAME PIC X(040).

 20 CONTACT-TITLE PIC X(040).

 20 CONTACT-PHONE PIC X(010).

 10 ASI-CUST-CONTACT.

 20 ASI-CUST-NO PIC X.

 20 ASI-CONTACT-NAME PIC X.

 20 ASI-CONTACT-TITLE PIC X.

 20 ASI-CONTACT-PHONE PIC X.

Column Attribute Status Indicators (ASIs)

RDM Administration Guide 227

♦ FORTRAN. Note that the C indicates the statement that the
programmer specifies in the source program; the RDML
preprocessor for FORTRAN generates all other statements.
C INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

 CHARACTER*6 PART

 CHARACTER*6 COMP

 CHARACTER*1 ASI_PART,ASI_COMP

 EQUIVALENCE (PART,PART_COMP(1:6))

 EQUIVALENCE (COMP,PART_COMP(7:12))

 EQUIVALENCE (ASI_PART,PART_COMP(13:13))

 EQUIVALENCE (ASI_COMP,PART_COMP(14:14))

 PARAMETER(PART_COMP_LEN=14)

 CHARACTER*(PART_COMP_LEN)PART_COMP

 CHARACTER
ULT$PART_COMP*30,ULT$PART*16,ULT$COMP*21,ULT_END_VIEW

 +1*4

 DATA ULT$PART_COMP/'V2 /ULT$PART

+/'006C00PART-NAME,'/ULT$COMP/'006C00COMPONENT-NAME,/ULT_END_
VIEW

 +1/'END.'/

Chapter 6 RDM status indicators

228 P25-8220-45

The ASIs have the following meanings:

ASI value Meaning

C Returned when the column values are changed by another view.
This check is made only when a GET statement (not GET FOR
UPDATE) is followed by an UPDATE or DELETE statement. You
can override this check by specifying SHARED on the ALLOW clause
of an ACCESS statement.

V Returned when the column is invalid (when a numeric column
contains non-numeric data, when a column failed its validation
checks [table, range, or user exit] or when a foreign key value is
incorrect).

- Returned when the column contains a null value, or when no physical
record exists to supply the column value. The column in the row is
set to blanks if it is a character, or zero if it is a binary, packed,
numeric, or floating point data item; or, if the field contains the null
value the column contains the null value. This ASI value only has
meaning on GET RDML requests. This value only has meaning on
GET RDML requests.

+ Returned if the column exists and was filled from a different
accessed entity. (GET processing only.) An ASI of + is given to
those columns generated by new physical records. GET FIRST
returns ASIs of + to all columns, because it retrieves the first row in a
view and must therefore access all associated physical records as
new.

 The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASIs of +, which are assigned to their
corresponding columns in the row.

= Returned if the column exists and its value was filled from the same
accessed entity as the last access (those column values generated
by unchanged physical records when a new row is read).

 The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASIs of +, which are assigned to their
corresponding columns in the row.

N The application programmer can place an N in the ASI during
UPDATES and INSERTS to set a column to its null value. This ASI
value is never returned by RDM.

Column Attribute Status Indicators (ASIs)

RDM Administration Guide 229

The three ways to use ASIs are:

♦ When you issue a GET command, certain columns returned may not
have a value. Check this status (on columns that were not altered)
with the ASI.

♦ If you receive an FSI indicating a data error, use the ASI to find which
columns have illegal values.

♦ Programmers can use ASIs for validation of input. For example,
when a logical view contains packed values, use the ASIs to avoid
errors at run time that would be caused if you performed a calculation
or move using an invalid packed decimal value. Do this by
examining each ASI for such columns before performing the
operation.

 If the ASI for a column is V, the value is placed in the row even
though it is not in a valid format. When a - ASI is returned, RDM
placed a valid zero in numeric columns and spaces in character
columns. For other ASI values, the column is valid.

Chapter 6 RDM status indicators

230 P25-8220-45

Validity Status Indicators (VSIs)
Validity Status Indicators (VSIs) reflect the validity of the logical view after
a RDML command causes a read of the physical database. The RDML
processor returns the VSI to the program. In MANTIS, see the VSI
function. For FORTRAN, COBOL, or BASIC RDML programs, the VSI is
returned in an area generated as part of the programmer-supplied
ULT-CONTROL statement (see the example in “Function Status
Indicators (FSIs)” on page 224). You can use these indicators to
determine the most significant ASI returned by RDM according to the
following hierarchy:

VSI value Meaning
C The column value was changed by another logical

view.
V At least one invalid ASI was returned.
- No invalid ASIs were returned, but at least one missing

ASI was returned.
+ No invalid or missing ASIs were returned, but at least

one new physical occurrence in the database was
returned.

= No invalid, missing, or new physical occurrences were
returned by this RDM function.

The VSI enables the programmer to quickly determine if any additional
processing of ASIs is needed to correct invalid data or to fill missing
values.

RDM Administration Guide 231

7
Optimizing view performance using
bound and global views

Opening a view is resource intensive. To improve performance, SUPRA
Server provides two methods to preopen views—bound and global—to
reduce the time needed to open a view. These methods are discussed in
the following sections.

Differences between bound and global views
A bound view is a preopened copy of a view that is stored in the SUPRA
Server Directory. View binding improves performance on the initial
access to a view, reducing the processing overhead of other requests to
open the view.

Chapter 7 Optimizing view performance using bound and global views

232 P25-8220-45

A global view is placed in a Global View file, which is loaded into global
memory during the first RDM sign-on (see the following figure).

No

Is the logical
GVSCHEMA

defined? Yes

No

First RDM
Sign-on to the

Database

No

Yes

Is Global Section
for Global View file

in memory?

Yes

Is the Global View
file user/password

combination
valid?

Task signed-on
to the database

(if database description
 successfully loaded)

Create Global Section,
load file identified by

the logical GVSCHEMA

Map to
Global View

file.

Is the logical
CSI_NODIRECTORY

defined as TRUE?
(i.e., the SUPRA
Directory is not

available)

Sign-on fails
Yes

Is the
user/password
combination

valid?

No

Yes

Differences between bound and global views

RDM Administration Guide 233

Once loaded in memory, all other RDM tasks map to the global file to
access the views. Performance improves because the first task to open
the Global View file is the only one that requires initialization resources.
All subsequent tasks simply map to the global section that contains the
Global View file.

To reduce global memory usage, only globalize views that are used by
multiple tasks concurrently.

Chapter 7 Optimizing view performance using bound and global views

234 P25-8220-45

Advantages of using global views

Both types of views can optimize system performance. However,
Cincom recommends that you use global views because they are loaded
in memory instead of requiring access to the Directory database
SUPRAD for each view-open request. Because global views are stored
in memory, they have the following advantages over bound views:

♦ Reduce the resources needed for system initialization.

 The first user who signs on to RDM initializes the Global View file; all
subsequent view requests map directly to the Global View file.
Therefore, the processing overhead of opening a view occurs only
once (see the figures under “Differences between bound and global
views” on page 231 and “Global views” on page 241).

♦ Isolate production systems from development changes.

 When using global views, tasks access the Global View file in
memory; they don't access the SUPRA Server Directory database
SUPRAD. This insulates your production database from changes
that can occur as a result of defining and testing views.

♦ Eliminate the need for all sites to have access to the SUPRA Server
Directory database SUPRAD.

 Because tasks do not access the SUPRA Server Directory database
SUPRAD, users do not require access to it. This allows you to run
without a SUPRA Server Directory by setting the logical definition
CSI_NODIRECTORY to TRUE (refer to the SUPRA Server PDM
System Administration Guide (VMS), P25-0130).

If you choose to run without a Global View file or only some of your views
globalized, a SUPRA Server Directory database (SUPRAD) must be
available.

The figure under “Differences between bound and global views” on
page 231 shows how the Global View file affects RDM sign-on
processing.

Differences between bound and global views

RDM Administration Guide 235

Changing view text: a note of caution
Whether you use bound or global views, the view text is always stored
separately from the bound or global copy. (The bound pre-opened copy
is stored on the SUPRA Server Directory; the globalized pre-opened copy
is stored in the Global View file, which may be in global memory.) If you
change the view text, you must update your bound and global copies of
the view to reflect the changes. If you fail to rebind the view or rebuild the
Global View file with the most current copy of view, your bound and
global views will become out of date. This could cause unpredictable
results.

Changing the text of a view when using bound views only
When you save changes to a view using DBAID, DBAID automatically
prompts you to rebind the view with the most current view text. You must
answer YES to that prompt for DBAID to rebind the view with the most
current view text. See “Binding a view” on page 236 for information on
saving a view using DBAID.

Changing the text of a view when using global views
When a view is included in a Global View file and the view text changes,
you must rebuild the Global View file so that it is updated. For
information on how to rebuild the Global View file, see “Creating a Global
View file” on page 243.

Changing the text of a view when bound views are included
in a global view file
If a bound copy of a view exists and you are using a Global View file, the
bound version is always included in the Global View file. This means that
if the view text changes, you must rebuild both the bound version and the
Global View file to ensure that all copies of the view are current.

Caution: Cincom recommends that you use global views only. If you
use both bound views and a Global View file, you must make sure the
view is current in three places (view text, bound version and global
version), as opposed to just two (view text and global version) if you use
only global views.

Chapter 7 Optimizing view performance using bound and global views

236 P25-8220-45

Bound views
A bound view is a pre-opened copy of a view that is stored in the SUPRA
Server Directory database SUPRAD. View binding improves
performance on the initial access to a view, reducing the processing time
for application program requests that open the view.

Binding a view
You can bind a view using two different utilities: DBA and DBAID.

Using DBA to bind a view
To bind a view using DBA, select option 3, Logical Views, from the
Function Selection for the DBA menu. The Logical View Function menu
displays. Select option 2, Modify, and respond to the prompts.

CINCOM SYSTEMS SUPRA DBA - LOGICAL VIEW FUNCTION

 Functions for logical views
 1 : Examine
 2 : Modify
 3 : Create
 4 : Delete
 5 : Connect to database description
 6 : Disconnect from database description
 7 : List database descriptions using view
 8 : List all logical views
 9 : User authorization

 Enter choice no.: 2

 Modify logical view name :
 (<PF4> will select CUSTOMER) : CUSTOMER-REFERENCE

 Database to which logical view refers : CUSTDB

To bind the view, press function key PF1 followed by B for bind. RDM
attempts to open, save and bind the view you selected for modification.
The view bind occurs only if the view-open and save to the SUPRA
Server Directory were successful. If RDM successfully binds the view, it
displays this message:
VIEW BINDING SUCCESSFUL

Bound views

RDM Administration Guide 237

Binding a view using DBAID
To bind a view using DBAID, use either the DBAID BIND command or
the DBAID SAVE command with the BIND qualifier. Note that a view
must be open before it can be bound. The sample DBAID session in the
following screen illustration shows how to bind a view using the BIND
command. You can also use the SAVE command to bind a view (see the
subsequent screen illustration).

>LIST CUSTOMER

 CUSTOMER

0005 KEY CUSTOMER-NUMBER = CUSTOMER-ID
0010 REQ CUSTOMER-NAME
0015 CUSTOMER-ADDRESS
0020 CUSTOMER-CITY
0025 CUSTOMER-STATE
0030 CUSTOMER-ZIP-CODE
0035 CUSTOMER-PHONE-NUMBER
0040 CUSTOMER-FAX-NUMBER
0045 CUSTOMER-CLASS
0050 CUSTOMER-CREDIT-CODE
0055 CUSTOMER-CREDIT-LIMIT
0060 REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID
0065 ACCESS CUST
0070 WHERE CUSTOMER-ID = CUSTOMER-NUMBER
0075 ALLOW ALL
0080 * To verify that CUSTOMER-BRANCH contains a valid branch on
0085 * INSERT and UPDATE.
0090 ACCESS BRAN
0095 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID
>OPEN*
FSI: * VSI: = MSG: 4424 BYTES USED IN OPENING VIEW.
>BIND*
REPLACE EXISTING VIEW (Y/N)?
>Y
SAVED 19 LINES AS CUSTOMER 12:40:42 04-JAN-1996
VIEW BINDING SUCCESSFUL.
>

Chapter 7 Optimizing view performance using bound and global views

238 P25-8220-45

Note that you do not need to list the view before you can open it and
make the view text available for saving, if required; however, listing the
text of a view allows you to check that you selected the correct view. The
session in the following screen illustration shows how to bind a view using
the SAVE command.

>LIST REGION

 REGION

0005 KEY REGION-NUMBER = REGION-ID
0010 REGION-NAME
0015 ACCESS REGN
0020 WHERE REGION-ID = REGION-NUMBER
0025 ALLOW ALL
0030 * To restrict deletions of regions that contain branches.
0035 ACCESS BRAN
0040 WHERE BRANCH-REGION-ID == REGION-ID
>OPEN*
FSI: * VSI: = MSG: 1656 BYTES USED IN OPENING VIEW.
>SAVE* BIND
REPLACE EXISTING VIEW (Y/N)?
>Y
SAVED 8 LINES AS REGION 12:20:51 04-JAN-1996
VIEW BINDING SUCCESSFUL.
>

Bound views

RDM Administration Guide 239

Ensuring that you update a bound view
The Directory stores the bound version of a view separately from the text
of a view. Therefore, if you change the text of the view and forget to
update the bound version (rebind it), the bound version becoming
out-of-date. An outdated bound view can produce unpredictable results,
including failures such as access violations in application programs,
MANTIS, or SPECTRA (SPECTRA is not available in OpenVMS AXP
environments).

Deleting the bound view only
To delete the bound version of a view without deleting the unbound view
text, first LIST the view in DBAID, then use the DBAID REMOVE
command to remove both bound and unbound views. Then LIST the
virtual view that remains and use the DBAID SAVE command to save the
view definition on the Directory without binding it.

Deleting both the view definition and the bound view
Use the DBAID REMOVE command to delete both a view definition and
the bound version of the view from the Directory. To guard against
accidental deletions, you can delete only views that are virtual (views that
you displayed using the DBAID LIST command). Even after you remove
a view, the virtual text is still available until you leave DBAID. To remove
the virtual view text, either enter the DBAID UNDEFINE command or
enter BYE to exit DBAID.

In DBA, use the Logical View Functions menu and select the Delete view
option to delete the view definition and the bound view.

Rebinding a view after making changes to view text
If you attempt to SAVE a view definition while a bound version of that
view exists, DBAID asks if you want to rebind the view. If you reply "Y,"
DBAID replaces the current bound version with the new bound version. If
you reply "N," DBAID saves the view on the Directory without re-binding it
and the view text and bound copy become inconsistent.

Chapter 7 Optimizing view performance using bound and global views

240 P25-8220-45

Testing views: failing to rebind a view
If you change the view definition and do not rebind the view, you will have
a bound version that is different from the unbound version. This is useful
if you are testing views before putting them into production, because
applications will only be able to use the bound version (unless the view is
globalized). Only after you rebind the view is it available to application
programs.

If the bound view is in a Global View file, you must rebuild the Global
View file before the new version of the view is available to application
programs.

Global views

RDM Administration Guide 241

Global views
The Global View facility allows you to place commonly used views into a
file that is loaded into global memory during the first RDM user
initialization. This makes the views available to authorized users (as
shown in the following figure). It also saves much of the processing
overhead of opening views at the first application program access for
each user task. In addition, view-open performance improves because
separate view definitions need not be loaded for each user. Users share
the copy of the view definition held in global memory.

Subsequent
RDM sign-on

Subsequent
RDM sign-on

Global View
File

Global Section
contains pre-opened
view definitions with
user authorizations

RDM driver
CSVIPLVS

RDM driver
CSVIPLVS

RDM driver
CSVIPLVScauses the Global View file

 to be opened
and loaded into memory

maps to the
global section
containing the
Global View file

maps to the
global section
containing the
Global View file

1st User to
sign on to RDM

(that has the logical
GVSCHEMA defined)

To ensure that RDM applications use the global views, assign the logical
name GVSCHEMA to the Global View file as shown:
$ DEFINE GVSCHEMA CSI_device:[directory] dbname.GBL

Chapter 7 Optimizing view performance using bound and global views

242 P25-8220-45

The database description associated with the Global View file identified
by the logical GVSCHEMA must be identified by the logical
CSI_SCHEMA. Refer to the SUPRA Server PDM System Administration
Guide (VMS), P25-0130, for a complete description of these logicals.

You can load both base and derived views into global memory by
including their view definitions in the Global View file. However, you
should include a base view in the Global View file before you include any
derived views that access it. Because the global view definitions are held
in a file rather than on the Directory, they:

♦ Reduce the resources needed for system initialization

♦ Isolate production systems from development changes

♦ Eliminate the need for all sites to have access to the SUPRA Server
Directory database SUPRAD

Available global views are used in preference to view definitions on the
Directory. Therefore, opening a global view does not require SUPRA
Server Directory access. This allows you to run without a SUPRA Server
Directory by setting the logical definition CSI_NODIRECTORY to TRUE
(refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130). If you choose not to use a Global View file or not all needed
views are included in the Global View file, a SUPRA Server Directory
must be available.

Once the global view is opened, it remains in the global memory until all
users sign off from the database.

Global views

RDM Administration Guide 243

Creating a Global View file
The Global View file contains a list of global views and users authorized
to access those views. Create a Global View file in one of two ways:

♦ Interactively, through the Global View file creation screens

♦ In batch, by creating an input text file containing details of the global
views and authorized users, and making the following logical
assignment:
$ DEFINE BATCH_GLOBAL_INPUT device:[directory] filename.ext

When you create a Global View file interactively, you can authorize only
users who are already connected to the views on the Directory. Users
who are not allowed to use a view on the Directory cannot be given
access to the global version of that view.

However, when you use the batch Global View file creation facility, you
can allow global view access to users who are not connected to a view on
the Directory. In addition, batch Global View file creation allows all users
connected to a view on the Directory to access the global version, unless
you use the disallow clause to explicitly exclude them from the Global
View file.

To initiate either method, select the Global View Creation option from the
SUPRA Facilities menu or run the Global View Creation program
CSVGLOBAL directly. CSVGLOBAL searches for a file identified by the
logical name BATCH_GLOBAL_ INPUT, which contains details of the
global views and authorized users. See “Batch Global View file creation”
on page 248 for more information.

CSVGLOBAL is a logical definition used to identify the Global View
Creation utility. Refer to the SUPRA Server PDM System Administration
Guide (VMS), P25-0130, for details of this logical definition.

Chapter 7 Optimizing view performance using bound and global views

244 P25-8220-45

If there is no logical translation for BATCH_GLOBAL_INPUT, the Global
View Creation program CSVGLOBAL defaults to interactive mode and
displays a series of screens. These screens prompt you to specify the
following:

♦ Views to be used as global views

♦ Users who can access each global view

Reverse video indicates where you enter data. The arrow and tab keys
position the cursor for entry. Press RETURN to transmit the data.

If you previously created a text file identified by the logical name
BATCH_GLOBAL_INPUT, CSVGLOBAL automatically uses the details
specified in that file. You do not need to enter any further information.
CSVGLOBAL translates the logical name CSI_SCHEMA to identify the
database that the specified global views should access.

Global views

RDM Administration Guide 245

Interactive Global View file creation
To create a Global View file interactively, select the Global View Creation
option from the SUPRA Facilities menu, or enter the DCL Run command
specifying CSVGLOBAL. Refer to the SUPRA Server PDM System
Administration Guide (VMS), P25-0130. SUPRA Server displays a
sign-on screen similar to that shown in the following screen illustration.

CINCOM SYSTEMS GLOBAL VIEW CREATION RELEASE 2.4

 *** ***
 ******* *******
 ********** **********
 ************ ************
 ************* *************
 ************** **************
 ************** **************
 Username =
 ************** **************
 ************** ************** Password =
 ************* *************
 ************ ************
 ********** **********
 ******* *******
 *** ***

CINCOM SYSTEMS SUPRA GLOBAL

Press TAB to move the cursor between the Username prompt and the
Password prompt. You must enter a valid user name and password as
defined to SUPRA Server. For security, your password is not displayed.
When you press RETURN or ENTER, the first Global View Creation screen
appears.

Chapter 7 Optimizing view performance using bound and global views

246 P25-8220-45

Selecting views. You use the first Global View Creation menu (see the
following screen illustration) to select the views you want to include in the
Global View file. SUPRA Server translates the logical name
CSI_SCHEMA to find the name of the database accessed by these views
and displays that name at the top of the screen.

CINCOM SYSTEMS GLOBAL VIEW CREATION RELEASE 2.4

 DATABASE NAME: QADBD1

 Include Restrict
 View Y/N User Y/N View Name

 TEST6D
 Y TEST63
 TEST6F
 Y TEST6G
 TEST7
 TEST9
 Y Y TEST10
 TEST11
 TEST12
 TEST13
 TEST14
 TEST15
 TEST16
 TEST8
 END SELECTION.

To select a view, enter Y in the “Include View” column. Any users who
have access to the view on the Directory are allowed to access the global
version of the view unless you enter Y in the “Restrict User” column.
Press TAB to move the cursor between fields.

The last entry on the View Selection menu is END SELECTION. There
may be another screen of views from which to choose. To display
subsequent view selection screens, enter N in the “Include View” column
next to END SELECTION. This displays the next screen (if there is one)
or returns you to the top of the current screen if there is no next screen.
When you are finished, press RETURN or enter Y next to END
SELECTION, and press RETURN.

Global views

RDM Administration Guide 247

Restricting user access to global views. If you enter a Y in any
Restrict User column, SUPRA Server displays the Restrict Users menu
when you finish selecting views. The name of the view you are restricting
displays at the top of the screen. The name of each user allowed to
access the non-global version of the view is displayed in the Username
column. To set the authority specifications, enter Y or N in the Authorize
column, as shown in the following screen illustration. Press RETURN or
ENTER to display the next restrict users screen.

CINCOM SYSTEMS GLOBAL VIEW CREATION RELEASE 2.4

 view name: TEST10

 Authorize Y/N Username

 Y DATABASE-DESCRIPTIONS
 Y SRV
 N ALEC

Following the last view selected, the Global View facility then:

♦ Opens each view in turn, displaying the message OPENING VIEW:
view-name. (The bound version is used, if one exists.)

♦ Creates the Global View file named xxxxxx.GBL (where xxxxxx is the
6-character database name).

♦ Displays a completion message in reverse video at the bottom of the
screen until you press PF1 to exit.

♦ Creates a Global View report by view name in a file named
GVxxxxxx.LIS (where xxxxxx is the database name). This report
shows which views are included and which users have access to
them.

Chapter 7 Optimizing view performance using bound and global views

248 P25-8220-45

Batch Global View file creation
Selecting Global View Creation from the SUPRA Facilities menu invokes
the CSVGLOBAL program. Alternatively, you can run CSVGLOBAL
directly from the command level by entering:
$RUN CSVGLOBAL

Refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for more information on the CSVGLOBAL logical definition.

The CSVGLOBAL program first searches for the logical name
BATCH_GLOBAL_INPUT, pointing to a text file. If this logical name and
corresponding file exist, CSVGLOBAL processes the file, using the
details it contains about the global views and authorized users, to create
a Global View file (batch Global View file creation). If the logical name
does not exist, CSVGLOBAL defaults to interactive global view creation
described in the preceding section. Use the DCL DEFINE command to
make the logical assignment as follows:
$DEFINE BATCH_GLOBAL_INPUT device:[directory]filename.ext

where device:[directory]filename.ext is the full directory specification for
the input text file. (The full directory specification is unnecessary if you
run batch global view creation from the directory containing the input file.)
Refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for complete details on this logical definition.

The input file can contain the following details:

♦ User name and password that you want to use to create global views

♦ Groups of users who should have similar rights to use views

♦ Global views and lists of users and/or groups allowed to access them

♦ The group ALL-VIEWS and lists of users and/or groups of users
allowed to access them

♦ The group OTHER-VIEWS (those views not already specified) and
lists of users and/or groups of users allowed to access them

Running the Global View Creation program in batch identifies the
database to be accessed by the global views by translating the logical
name CSI_SCHEMA. Therefore, before you run batch Global View file
creation, make the following logical assignment:
$DEFINE CSI_SCHEMA database-name

where database-name is the 6-character name of your database. Refer
to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for complete details on this logical definition.

Global views

RDM Administration Guide 249

Creating an input text file. You create a Global View input file using a
standard text editor. Input files are divided into three parts:

♦ User definition

♦ Group definitions

♦ View definitions

The user definition is required and consists of the USER statement that
specifies the user name that is creating the Global View file. You can
include only one user definition.

Group definitions are optional and specify any number of users who are
to have the same global view access rights. You can include as many
group definitions as you want. You can also include one group within
another group, provided you defined the included group earlier in the
input file. Thus, group definitions provide greater flexibility in restricting
user access to views.

At least one view definition is required. View definitions identify the views
being made global and specify user access to those views by allowing
and disallowing named users and groups of users. You can specify as
many view definitions as you want; however, the view definition
ALL-VIEWS overrides all previous view definitions. At least one user
must be allowed access to at least one view.

An exclamation mark (!) anywhere on a line indicates that the text to the
right of the exclamation mark is a comment.

Chapter 7 Optimizing view performance using bound and global views

250 P25-8220-45

User definition

 USER username [,PASSWORD password].

Group definition

...
 ,

,

=
name-group

username

name-group

username
name-group

GROUPGROUP
 GROUP

View definition

VIEWS-OTHER

VIEWS-ALL

VIEW[S] ...][, name-viewname-view

 :ALLOW
:DISALLOW GROUP ,

,GROUP

username
group - name

username
group - name

Global views

RDM Administration Guide 251

User definition

USER user-name

Description Required. Identifies the user to access the Global View Creation
program.

Format 1–30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

♦ The user name must exist on the SUPRA Server Directory
(SUPRAD) and have a privilege of at least DATABASE
ADMINISTRATOR (DA).

♦ The user definition is terminated with a period (.).

,PASSWORD password

Description Optional. Specifies the password associated with the user name.

Format 6 alphanumeric characters.

Considerations

♦ If the specified user name has a password, the password you enter
must match.

♦ If the specified user name has a password, but no password is
entered, the Global View Creation program prompts you to enter the
password at the terminal. The password you type does not display
on the screen.

♦ If running batch global view creation, you must include a password
clause if a password is needed.

♦ If the user definition has a password, you must enter the period (.)
that terminates the user definition after the password.

Chapter 7 Optimizing view performance using bound and global views

252 P25-8220-45

Group definition

GROUP group-name =

Description Required for each group definition. Specifies the name of a group of
users, groups, or users and groups to have the same access to particular
global views.

Format 1–30 alphanumeric characters.

Considerations

♦ Terminate the GROUP statement with a period (.).

♦ You can define each group name only once.

♦ If you define a group that contains one or more other groups, these
groups must already be defined in a previous GROUP statement.

♦ You must specify a group name with a GROUP statement before it
can be used in a VIEW[S], ALL-VIEWS, or OTHER-VIEWS
statement.

♦ The group ALL-USERS is predefined. Do not attempt to specify it by
using a GROUP statement.

user-name

Description Optional. Identifies the user(s) to be included in the group.

Format 1–30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

♦ All specified user names must exist on the SUPRA Server Directory
database SUPRAD.

♦ You can specify combinations of user names and predefined group
names in any GROUP statement. However, specify at least one user
name or one group name.

♦ Separate each user name and GROUP group name specification
with a comma (,).

Global views

RDM Administration Guide 253

GROUP group-name

Description Optional. Identifies a previously defined group or groups to be included in
this group.

Format 1–30 alphanumeric characters.

Considerations

♦ All group names you include in one group must already be defined in
a previous GROUP statement.

♦ You can specify combinations of predefined group names and user
names in any GROUP statement. However, specify at least one
group name or one user name.

♦ Separate each GROUP group name and user name specification
with a comma (,).

Chapter 7 Optimizing view performance using bound and global views

254 P25-8220-45

View definition

VIEW[S] view-name [,view-name...]

Description Optional. Specifies a view or list of views as global views.

Format 1–30 alphanumeric characters and hyphens. Each specified view must
already exist.

Considerations

♦ Terminate each view statement with a period (.).

♦ Include at least one of the following view statements in the view
definition:

- VIEW[S] view-name [, view-name...]

- ALL-VIEWS

- OTHER-VIEWS

♦ Separate each view name in the list by a comma (,).

♦ The VIEW[S] view-name [, view-name...] statements can be used
with the OTHER-VIEWS statement. However, all VIEWS[S]
statements must be defined before the OTHER-VIEWS statement in
the input file.

♦ You can specify a maximum of 1000 global views.

ALL-VIEWS

Description Optional. Specifies all views on the Directory as global views.

Consideration The ALL-VIEWS statement overrides any previously specified views. A
warning displays if any view definition precedes the ALL-VIEWS
statement.

OTHER-VIEWS

Description Optional. Specifies all views other than those already specified in a
VIEW[S] statement.

Consideration Include the OTHER-VIEWS statement after VIEW[S] statements.

Global views

RDM Administration Guide 255

; ALLOW

Description Optional. Allows specified users or groups of users access to named
global views.

Considerations

♦ You can specify as many ALLOW and DISALLOW clauses as you
want, in any order. However, if you ALLOW and DISALLOW a given
user or group name several times, only the last ALLOW or
DISALLOW applies.

♦ A user can use a global view only if one of the following conditions is
met:

- The user is connected to the view on the Directory and is not
specified in any DISALLOW clause.

- The user is in an ALLOW clause and is not in any subsequent
DISALLOW clause.

; DISALLOW

Description Optional. Prevents specified users or groups of users from accessing
named global views.

Considerations

♦ You can specify as many DISALLOW and ALLOW clauses as you
want, in any order. However, if you DISALLOW and ALLOW a given
user or group name several times, only the last DISALLOW or
ALLOW applies.

♦ A user can use a global view only if one of the following conditions is
met:

- The user is connected to the view on the Directory and is not
specified in any DISALLOW clause.

- The user is in an ALLOW clause and is not in any subsequent
DISALLOW clause.

♦ Include the statement DISALLOW GROUP ALL-USERS first, after
the VIEW clause, to ensure that only those users explicitly specified
in subsequent ALLOW clauses have access to the global views.

Chapter 7 Optimizing view performance using bound and global views

256 P25-8220-45

user-name

Description Optional. Identifies users who are allowed or disallowed access to the
specified global view or views.

Format 1–30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

♦ All specified user names must exist on the SUPRA Server Directory
(SUPRAD).

♦ User names connected to a view on the Directory automatically have
access to the global version unless specifically excluded through a
disallow statement.

♦ User names included in an ALLOW clause that are not connected to
a view on the SUPRA Server Directory can access only the global
version of the view.

GROUP group-name

Description Optional. Identifies a previously defined group allowed or disallowed
access to the view or views specified.

Format 1–30 alphanumeric characters.

Option GROUP ALL-USERS

Considerations

♦ Specify only those group names that are already defined in a
previous GROUP statement.

♦ The group ALL-USERS is predefined.

Global views

RDM Administration Guide 257

Example Global View input files
The following examples illustrate user, group, and view definitions as they
appear in a global view input file.

♦ USER ALICE.

GROUP PRODUCTION = USER3, USER19, JIM .
 ! Group definition for group PRODUCTION .
ALL-VIEWS ; DISALLOW GROUP ALL-USERS ;
 ALLOW GROUP PRODUCTION

 ; ALLOW ALICE.
! All views on the Directory are defined as global views.
! The DISALLOW GROUP ALL-USERS restricts access to all
! users, including those connected to the views on the
! Directory. Only the PRODUCTION group and user ALICE
! can access the global views.

♦ USER DATABASE-DESCRIPTIONS.

GROUP PRIV = ANN, DAVID, MARY .!development personnel
GROUP ADMIN = JIM, SARAH . !administrative personnel
VIEWS PRODUCT, CUSTOMER;
 DISALLOW GROUP ALL-USERS;
 ALLOW GROUP ADMIN, GROUP PRIV, SAM.
! The views PRODUCT and CUSTOMER are defined as global
! views. View definition allows development personnel,
! administrative personnel, and user SAM access to the global
! views PRODUCT and CUSTOMER.
VIEW PRODUCT;
 ALLOW GROUP ALL-USERS;
 DISALLOW GROUP ADMIN ; ALLOW JIM.
! The view PRODUCT-STRUCTURE-VIEW is defined as a
! global view. View definition disallows the ADMIN group;
! however, user JIM who is also a member of the ADMIN group
! is given access through a subsequent ALLOW clause.
OTHER-VIEWS.
! All other views connected to this database are defined as
! global views. Because there is no ALLOW clause, these
! views are accessible to all users who are connected to
! them on the Directory.

♦ USER DATABASE-DESCRIPTIONS.

 VIEWS ORDERS,PRODUCT;
 DISALLOW GROUP ALL-USERS.
 OTHER-VIEWS; ALLOW GROUP ALL-USERS.
! This input file includes all views in the global
! view file and allows all users to access all views
! except ORDERS and PRODUCT.

Chapter 7 Optimizing view performance using bound and global views

258 P25-8220-45

After Batch Global View Creation processes the input file, it:

♦ Opens each view in turn and displays the message:
OPENING VIEW: view-name

♦ Creates the Global View file named xxxxxx.GBL (where xxxxxx is the
6-character database name) and displays the message:
FILE: data-base-name.GBL CREATED

♦ Creates a Global View report by view name in a file named
GVxxxxxx.LIS (where xxxxxx is the database name). This report
shows which views are included and which users have access
authority.

Example Global View report file
The following example shows the contents of a Global View report file for
the database TESTDB. The filename is GVTESTDB.LIS.

CREATION OF GLOBAL VIEWS ON: 1-APR-1996 12:37:24
VIEW NAME USER NAME
PRODUCT JIM
CUSTOMER SARAH
 ANN
 DAVID
 SAM
CUSTOMER-ADDRESS JIM
PRODUCTS-IN-REGION SARAH
 ANN
 HARRY
 JANE
 ALICE
RDM ERROR ON VIEW :PRODUCT
#0003 KEY NOT SUPPLIED.

The Global View report file also lists any errors encountered when RDM
attempted to create the global views.

Options for RDM access to the SUPRA Server directory

RDM Administration Guide 259

Options for RDM access to the SUPRA Server directory
When using RDM bound and global views, you have several options
regarding access to the SUPRA Server Directory by applications.
“Running without the directory” on page 259, “Running with the directory
and with Global Views” on page 260 and “Running with the directory
alone” on page 260 describe these options. The figure under
“Differences between bound and global views” on page 231 shows you
graphically what happens when you try to access the Directory using the
different options.

Running without the directory
If you decide not to use the SUPRA Server Directory (the logical
CSI_NODIRECTORY=TRUE), RDM gets run-time information only from
the Global View file. The PDM gets run-time information from the
database description file identified by the logical CSI_SCHEMA.

To run an application program without the SUPRA Server Directory, the
following logicals must be defined:
$DEFINE CSI_NODIRECTORY TRUE

$DEFINE CSI_SCHEMA dbname

$DEFINE GVSCHEMA dev:[dir]global-view-file.GBL

Note that you can map global views to a system-wide global section
(instead of the usual group-wide global section) by defining:
$DEFINE GVSCHEMA_SYS TRUE

Refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for complete descriptions of these logicals.

Chapter 7 Optimizing view performance using bound and global views

260 P25-8220-45

Running with the directory and with Global Views
If you have access to a SUPRA Server Directory and to a Global View
file, the global view overrides the corresponding view on the SUPRA
Server Directory. Likewise, a bound view takes preference over the
unbound version. In this environment, when a program requests a
specific view, SUPRA Server proceeds as follows:

♦ SUPRA Server uses that view if it is available in the Global View file.

♦ If no global view exists, SUPRA Server seeks a bound view on the
SUPRA Server Directory.

♦ If neither a global view nor a bound view is available, SUPRA Server
tries to use the unbound view text on the SUPRA Server Directory.

When using both global views and the SUPRA Server Directory, you
must have the following logicals defined:
$ DEFINE CSI_SCHEMA database-name

$ DEFINE GVSCHEMA database-name

Running with the directory alone
If a SUPRA Server Directory is available and global views are not being
used, define logicals as follows:
$ DEFINE CSI_SCHEMA database-name

Note that the logical CSI_NODIRECTORY must not be defined as TRUE
(you can eliminate the definition) Also note that the logical GVSCHEMA
should not exist. If it points to an invalid value (non-Global View file), a
warning will be generated and no Global View file will be used.

RDM Administration Guide 261

8
Generating RDM reports

The RDM reports track the complex relationships between physical data
items, logical data items, and columns, and between base views and
different levels of derived views. You can generate reports for both the
DBA and the programmer. In addition, you can list cross references of
logical and physical data items and report on domain and validation table
usage.

The RDM reports are now available in the OpenVMS Alpha environment
beginning with SUPRA Server PDM release 2.4.

The RDM reports show all views defined on the SUPRA Server Directory,
whether base or derived. Run the reports to find out which columns are
available from your base views, what integrity and security constraints
they impose, and what maintenance actions are allowed for each view.
Until you understand your base views, you cannot efficiently design
derived views that use them. When defining views through both DBAID
and DBA (EDIT/EDT interface), you can list the text of your base views
on the screen, and even use their view definitions as the basis for your
derived views, thereby saving typing. See “Defining and testing views
using DBAID” on page 135 for details on how to use DBAID to define and
test views. Refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260, for details on how to define views
through DBA.

Once you have either reported on all the base views or listed them on
your screen, you can begin to define derived views to fulfill the needs of
the users.

Chapter 8 Generating RDM reports

262 P25-8220-45

The scope of the five RDM reports varies according to the option you
select from the report specification screen (illustrated in “Stage one—
specifying the reports to be produced” on page 264). The reports are:

♦ DBA report

- All views

- Specified databases

- Specified views

- Online report for a specified view

♦ Domain usage report

- All domains

- Specified domains

♦ Logical data item cross reference report

- All views

- Specified databases

- Specified views

♦ Physical data item cross reference report

- All data sets

- Specified databases

- Specified data sets

- Online report for indices on a specified database

♦ Validation table usage report

- All validation tables

- Specified validation tables

RDM reports

RDM Administration Guide 263

RDM reports
You run the RDM reports in two stages:

1. Execute the command file CSIREQ.COM to sign on to SPECTRA
and specify the reports you want to generate.

2. Produce the reports you specified by executing the command file
CSIREP.COM.

Chapter 8 Generating RDM reports

264 P25-8220-45

Stage one—specifying the reports to be produced
Choose your reports by executing the request command file
CSIREQ.COM. CSIREQ.COM initiates SPECTRA, then displays the
reporting request screen for you to specify which reports you want to
produce.

Follow these steps to display the reporting request screen:

1. Enter @CSI_DBA:CSIREQ.COM at the DCL command level to
execute CSIREQ.COM. This command file displays the SPECTRA
sign-on screen, as illustrated below.

CINCOM SYSTEMS SUPRA RELEASE n.n

 *** ***
 ******* *******
 ********** **********
 ************ ************
 ************* *************
 ************** **************
 ************** **************
 Username =
 ************** **************
 ************** ************** Password =
 ************* *************
 ************ ************
 ********** **********
 ******* *******
 *** ***

 CINCOM SYSTEMS SPECTRA

Stage one—specifying the reports to be produced

RDM Administration Guide 265

2. Sign on to SPECTRA with the user name REPORTS and no
password to display the SUPRA Directory Reporting Request menu,
shown below.

Central files not available, User identification changed
==>

 SUPRA DIRECTORY REPORTING REQUEST MENU
 ======================================

SELECT ONE OF THE TOPICS BELOW. TYPE THE NUMBER AND PRESS ENTER.

 1. CANCEL all report specifications
 2. DBA reports for views
 3. LOGICAL DATA ITEM CROSS-REFERENCE reports for sets of views
 4. PHYSICAL DATA ITEM CROSS-REFERENCE reports for data sets
 5. DOMAIN USAGE reports
 6. VALIDATION TABLE USAGE reports

 7. EXIT the report request facility

1=TOP 2=HELP 3=END 4=EX 5=SPLT 6=INP 7=PRIOR 8=NXT 9=MRK 10=GET 11=MOVE 12=PUT

Select one of the RDM reports by typing its number at the command line
and pressing ENTER.

You can cancel all preceding report selections by typing 1 at the
command line and pressing ENTER.

Chapter 8 Generating RDM reports

266 P25-8220-45

After you select the report, the appropriate RDM report specification
screen displays. The following screen illustration shows an example of
the RDM Report Specification screen displayed by selecting option 2,
DBA reports for views.

Ready
==>2/ENTER

SUPRA DIRECTORY REPORTING REQUEST MENU
======================================

DBA REPORTS

SELECT ONE OF THE TOPICS BELOW. TYPE THE NUMBER AND PRESS ENTER.

 1 VIEWS for ALL databases defined on the SUPRA Directory
 2 VIEWS for a SPECIFIED database defined on the Directory
 3 VIEWS selected by NAME only
 4 ONLINE report for specified views
 5 RETURN to top menu
 6 EXIT the report request facility

1=TOP 2=HELP 3=END 4=EX 5=SPLT 6=INP 7=PRIOR 8=NXT 9=MRK 10=GET 11=MOVE 12=PUT

Select the scope of the report you want to produce by typing its number
at the command line, and press ENTER. This displays the process name
and a brief description of the report parameters you need to enter.

Stage one—specifying the reports to be produced

RDM Administration Guide 267

In this example, option 2, VIEWS for a SPECIFIED database defined on
the Directory, the following screen displays, prompting you to type in the
name of the database you want to report on.

Ready
==>2/ENTER
 JANUARY 4TH, 1996 14:03:00 PAGE 1

REP-DBA-SPEC-DB

 This routing specifies the parameters for part 2 of the DBA report
 for SPECIFIED databases on the Directory. This report is view name
 within database name sequence.

 Enter the name of the database required or <CTRL Z> TO EXIT

1=TOP 2=HELP 3=END 4=EX 5=SPLT 6=INP 7=PRIOR 8=NXT 9=MRK 10=GET 11=MOVE 12=PUT

Enter the database name in uppercase and press RETURN. If you enter
the database name in lowercase, even if the database exists, SPECTRA
rejects the specification with the message:
META002 - DATABASE NOT DEFINED TO THE DIRECTORY

After you press RETURN, SPECTRA displays a message confirming your
choice and prompts you to press CTRL-Z to return to the initial Directory
Reporting Request menu displayed in the second illustration above.

You can exit without specifying a report parameter by pressing CTRL-Z.

Chapter 8 Generating RDM reports

268 P25-8220-45

Stage two—generating the reports
Execute the command file CSIREP.COM by entering:
@CSI_DBA:CSIREP

This command file executes the SPECTRA processes to generate the
reports and output them to your default directory; that is, the VMS
directory to which your process is set when you execute CSIREP.

The reports have these names:

♦ CSI_DBA_REP.DAT - DBA Report

♦ CSI_DOMN.DAT - Domain Usage Report

♦ CSI_XREF1.DAT - Logical Data Item Cross Reference Report

♦ CSI_XREF2.DAT - Physical Data Item Cross Reference Report

♦ CSI_VALT.DAT - Validation Table Usage Report

Appendix B on page 279 illustrates the format and layout of the reports.

RDM Administration Guide 269

A
DBAID quick reference

DBAID commands

*

An asterisk has two uses:

♦ As a substitute for the last view name used.

♦ To denote a comment line when entered in column one of a view.

=

Reissues the previous RDML command.

BIND view-name

Saves and binds the specified view.

BY-LEVEL [view-name [column-number]]

Displays the column names in a view by level of occurrence starting with
level 0, followed by level 1, etc.

BYE

Exits DBAID.

CAUTIOUS

Prohibits an automatic COMMIT.

Appendix A DBAID quick reference

270 P25-8220-45

COLUMN-DEFN [view-name [column-name]]

Displays a full description of the columns in a view. Equivalent to the
FIELD-DEFN command.

COLUMN-TEXT [view-name [column-name]]

Displays the comments for the columns in a view. Equivalent to the
FIELD-TEXT command.

COMMIT

Permanently applies all updates to the database made since the last
COMMIT point.

COPY view-name1 view-name2

Copies the text of one view to another view.

DEFINE view-name

Defines a new view to DBAID.

DELETE [ALL] view-name

Deletes a row occurrence from the database.

DENY view-name user-name1 […user-namen]

Revokes one or more users' privilege to use a view. Separate user
names by one space.

EDIT view-name

Prepares a saved or virtual view for modification.

ERASE

Issues an RDM RESET if an "X" FSI is returned. This command is the
opposite of KEEP.

FIELD-DEFN [view-name [column-name]]

Displays a full description of the columns in a view. Equivalent to the
COLUMN-DEFN command.

DBAID commands

RDM Administration Guide 271

FIELD-TEXT [view-name [column-name]]

Displays the comments for the columns in a view. Equivalent to the
COLUMN-TEXT command.

FORGET mark-name

Removes the specified mark and frees the storage allocated by a
previously issued MARK command.

[]

[]

GET

NEXT
LAST
SAME
FIRST
PRIOR

 FOR UPDATE

AT
USING

−

−

view name

mark name
literal1 literal2literal n

Retrieves and displays a row for the specified view.

[]

[]

GO NEXT
PRIOR

 START

NEXT
LAST
SAME
FIRST
PRIOR
AT

 FOR

 FROM
USING

−

−

− −

view name

mark name

number of rows

literal1 literal2 ...literal n

Issues a GET request based on a single key, followed by a series of
sweeping GETs. Displays the rows in tabular format.

HELP [topic]

Invokes the DBAID online Help facility.

Appendix A DBAID quick reference

272 P25-8220-45

[]INSERT
NEXT
LAST
FIRST
PRIOR

 MASS

−view name

Places a row in the physical database at the specified relative location.

KEEP

Prohibits an automatic RESET. The opposite of the ERASE command.

line-number [ddl-statement]

Deletes, adds, or replaces the ASD statement in the current virtual view.

LINESIZE [number-of-characters]

Specifies the number of characters to be displayed on a line.

LIST view-name

Displays a saved or virtual view and readies it for modification.

MARK view-name AT mark-name

Marks the current position of the row, as established by the previous GET
command.

MARKS

Lists all open MARKs and the views they are marking.

OPEN [user-view-name] view-name [column1[...,columnn]]

Readies a stored or virtual view for use by DBAID.

PAGESIZE [number-of-lines]

Specifies the number of lines to be displayed on a screen/page.

PERMIT view-name user-name1 [...user-namen]

Relates a view to a user(s) on the Directory. Separate each user name
with a single space.

DBAID commands

RDM Administration Guide 273

PRINT-STATS

Causes RDM to display the current statistics without disabling them.

RELEASE [view-name]

Closes a specific view or all views that have been opened and releases
the occupied storage.

REMOVE view-name

Removes the specified view from the Directory, together with any
relationships between the view and the database and the view and any
users.

RENUMBER view-name

Renumbers a virtual view so that the line numbering starts at 10, with
each line numbered in increments of 10.

RESET

Forces a task level abend and rolls back any database updates since the
most recent commit point.

SAVE view-name [BIND]

Stores on the Directory a view that was previously opened with an OPEN
command.

SHOW-NAVIGATION [view-name]

Allows you to verify the accuracy of the access paths used by RDM to
access the underlying entities during a view open.

SIGN-OFF

Signs off the user from DBAID.

SIGN-ON user-name [password]

Identifies the user to DBAID.

Appendix A DBAID quick reference

274 P25-8220-45

STATS [view-name]

Displays statistics for one or all open views, provided you previously
entered the STATS-ON command.

STATS-OFF

Prints the current statistics; then terminates statistics gathering.

STATS-ON

Initializes statistics to zero and then begins gathering statistics.

SURE

Issues a COMMIT after each successful insert, update, or delete.

UNDEFINE ALL
view name−

Removes the name and definition of a virtual view.

UPDATE VIEW-NAME [column1:=literal1[,...columnn:=literaln]]

Updates data values in the database.

USER-LIST user-view-name

Displays the column definition for the specified user view.

VIEW-DEFN [view-name]

Displays a condensed description of a view.

VIEWS

Lists all the views currently active in DBAID.

VIEWS-FOR-USER

Lists the names and short text for the views related to the signed-on user.

Definitions

RDM Administration Guide 275

Definitions
column-name The name of a column (logical data item) in a view.

column-number The number of the column whose name is to be displayed.

ddl-statement A View Definition statement.

line-number The number of a line in the view.

literal A group of characters used to represent a data value.

mark-name The name of the mark with which you are working.

number-of-records The number of records processed or to be processed.

topic Subject for which Help text is requested.

user-name The name of a user as defined on the Directory.

user-view-name The name of the user view with which you are working.

view-name The name of the view with which you are working.

password Password associated with the user-name on the Directory.

Appendix A DBAID quick reference

276 P25-8220-45

Status indicators

ASI values

Value Meaning
C Returned when the column values are changed by another view.

This check is made only when a GET statement (not GET FOR
UPDATE) is followed by an UPDATE or DELETE statement. You
can override this check by specifying SHARED on the ALLOW clause
of an ACCESS statement.

V Returned when the column is invalid (when a numeric column
contains non-numeric data, when a column failed its validation
checks [table, range, or user exit] or when a foreign key value is
incorrect).

- Returned when the column contains a null value, or when no physical
record exists to supply the column value. The column in the row is
set to blanks if it is a character, or zero if it is a binary, packed,
numeric, or floating point data item; or, if the field contains the null
value, the column contains the null value. This ASI value only has
meaning on GET RDML requests.

+ Returned if the column exists and was filled from a different
accessed entity. (GET processing only.) An ASI of + is given to
those columns generated by new physical records. GET FIRST
returns ASIs of + to all columns, because it retrieves the first row in a
view and must therefore access all associated physical records as
new.

 The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASIs of +, which are assigned to their
corresponding columns in the row.

= Returned if the column exists and its value was filled from the same
accessed entity as the last access (those column values generated
by unchanged physical records when a new row is read).

 The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASIs of +, which are assigned to their
corresponding columns in the row.

N The application programmer can place an N in the ASI during
UPDATES and INSERTS to set a column to its null value. This ASI
value is never returned by RDM.

Status indicators

RDM Administration Guide 277

FSI values

Value Meaning
* Successful completion of the RDML function.
D Data error: The row contains invalid or changed data (VSI=C). Check

the ASI to find the column(s) containing the invalid value. Check the
associated message in the ULT-MESSAGE area of ULT-CONTROL.

F Failure: Indicates a major error. Something may be wrong with the
database, or you may have tried to perform an illegal function on the
user view. Check the associated message in the ULT-MESSAGE
area of ULT-CONTROL.

N Not found: Indicates a failure due to an occurrence problem that may
be the result of a GET not found or an INSERT duplicate found.
Check the associated message in the ULT-MESSAGE area of ULT-
CONTROL.

S Security check: Verify the RDML function and correct if necessary.
U Unavailable resource: The resource required to complete this function

was not available; retry later.
X Reset recommended: While processing, RDML modifications were

made to the database before the error condition was detected. Issue a
RESET to restore the database. RESET overrides D, F, S, or U
indicators.

Appendix A DBAID quick reference

278 P25-8220-45

VSI values

Value Meaning
C At least one column was changed by another view.
V At least one invalid ASI was returned.
- No invalid ASIs were returned, but at least one

missing ASI was returned.
+ No invalid or missing ASIs were returned, but at least

one column in the row has changed.
= No invalid, missing, or new physical occurrences were

returned by this RDM function.

RDM Administration Guide 279

B
Example RDM reports

This appendix contains examples of the RDM reports and a description
of their content. Each variable field in the report is given a key so that it
can be identified in the format descriptions. These keys are included for
the purpose of this description only and do not appear on the reports.

Appendix B Example RDM reports

280 P25-8220-45

DBA report format description
You can generate three DBA reports. The format of all three is the same,
as illustrated in the figure on the following page. The difference is in the
scope of the report: the first report describes all views held on the
Directory; the second describes views for a specified database and the
third describes selected views.

In addition to the three DBA reports, a fourth option allows you to produce
an online report for a specified view. This is the same as the third DBA
report on selected views except that it produces the report file while you
wait.

To produce the online report, select option 4 and enter the view name in
response to the LV: prompt. After a pause when the RDM Reporting
facility creates the report file CSI DBA QCK.DAT in your default directory,
you are prompted to press RETURN for next page or press END to stop:

♦ Press RETURN to redisplay the LV: prompt.

♦ Type END and press RETURN to redisplay the initial Directory
Report Request menu (see the screens illustrated under “Stage
one—specifying the reports to be produced” on page 264).

The DBA report describes in detail each data item used in a view. Where
the reported view is a base view, the report also describes the data
provided for higher level “derived” views. In addition, the DBA report lists
the authorized users, the comments, the access definition, and the
databases to which the view is connected.

DBA report format description

RDM Administration Guide 281

The following figure shows the DBA report. The table following the DBA
report provides field descriptions.

 DECEMBER 8TH, 1996 10:11:11 PAGE 1
 LOGICAL VIEW DBA REPORT PART 3 FOR : * SELECTED VIEWS *

 LOGICAL VIEW NAME : BRANCH

PHYSICAL DOMAIN DATA CONSTANT VALUE LOGICAL COLUMN
DATA ITEM OVERRIDE TYPE OR DOMAIN DATA ITEM
--------- -------- ----- -------------- --------- --------------

BRANCTRL Key BRANCH-ID BRANCH-NUMBER
BRANNAME Data BRANCH-NAME BRANCH-NAME
BRANREGN Y Required BRANCH-REGION BRANCH-REGION-ID BRANCH-REGION
REGNCTRL Y Required REGION REGION-ID BRANCH-REGION
BRANADDR Data BRANCH-ADDRESS BRANCH-ADDRESS
BRANCITY Data BRANCH-CITY BRANCH-CITY
BRANSTAT Data STATES BRANCH-STATE BRANCH-STATE
BRANZIPC Data ZIP-CODES BRANCH-ZIP-CODE BRANCH-ZIP-CODE
BRANSLSQ Data BRANCH-SALES-QUOTA BRANCH-SALES-QUOTA
BRANSTFQ Data BRANCH-STAFF-QUOTA BRANCH-STAFF-QUOTA
BRANDELV Data DELIVERY-ROUTES BRANCH-DELIVERY-ROUTE BRANCH-DELIVERY-ROUTE

DATA PROVIDED FOR HIGHER LEVEL VIEWS :

 CONSTANT
 VALUE OR
FOR VIEW COLUMN SOURCE COLUMN DATA TYPE DOMAIN D/OV
---------------- ----------------- ------------------- --------- --------- ----

BRANCH-LOCATION BRANCH-NUMBER BRANCH-NUMBER Key
BRANCH-LOCATION BRANCH-NAME BRANCH-NAME Data
BRANCH-LOCATION BRANCH-REGION BRANCH-REGION Required
BRANCH-LOCATION BRANCH-ADDRESS BRANCH-ADDRESS Data
BRANCH-LOCATION BRANCH-CITY BRANCH-CITY Data
BRANCH-LOCATION BRANCH-STATE BRANCH-STATE Data
BRANCH-LOCATION BRANCH-ZIP-CODE BRANCH-ZIP-CODE Data
BRANCH-LOCATION BRANCH-DELIVERY-ROUTE BRANCH-DELIVERY-ROUTE Data
PRODUCTS-IN-REGION BRANCH-NUMBER BRANCH-NUMBER Key
PRODUCTS-IN-REGION BRANCH-NAME BRANCH-NAME Data
BRANCH-STOCK BRANCH-NUMBER BRANCH-NUMBER Key
BRANCH-STOCK BRANCH-NAME BRANCH-NAME Data
PRODUCTS-IN-BRANCH BRANCH-NUMBER BRANCH-NUMBER Key
REGION-111-INFO BRANCH-NUMBER BRANCH-NUMBER Key
REGION-111-INFO REGION-NUMBER BRANCH-REGION Constant 111
REGION-111-INFO BRANCH-NAME BRANCH-NAME Data
REGION-111-INFO BRANCH-CITY BRANCH-CITY Data
REGION-111-INFO BRANCH-STATE BRANCH-STATE Data
BRANCHES-IN-REGION BRANCH-NUMBER BRANCH-NUMBER Key
BRANCHES-IN-REGION BRANCH-NAME BRANCH-NAME Data

Appendix B Example RDM reports

282 P25-8220-45

USERS :

 DR

COMMENTS :

ACCESS DEFINITION :

ACCESS BRAN
 WHERE BRANCH-ID = BRANCH-NUMBER
 ALLOW ALL
* To verify that BRANCH-REGION contains a valid region
* on INSERT and UPDATE.
ACCESS REGN
 ONCE
 WHERE REGION-ID == BRANCH-REGION-ID
* To restrict deletions of branches containing customers.
 ACCESS CUST
 WHERE CUSTOMER-BRANCH-ID = BRANCH-ID
* To restrict deletions of branches that have stock.
 ACCESS STCK
 WHERE STOCK-BRANCH-ID = BRANCH-ID

USED BY DATABASES :

 EXAMPL

DBA report format description

RDM Administration Guide 283

The first half of the report in preceding figure details each item used in a
view. The following information explains the fields in that half of the
report:

Field Explanation
PHYSICAL
DATA ITEM

Each column in a view eventually maps to a physical data item
through its logical data item equivalent, possibly via many levels of
logical view. This field shows the physical data item name.

DOMAIN
OVERRIDE

A "Y" in this field indicates that the "DOMAIN OVERRIDE" feature is
enabled for this physical data item. Note that this field indicates only
those domain overrides enabled through the column definition of the
view. Domain overrides entered in the access definition are not listed
here, they are given in the listing of the access definition (see field
number 15).

DATA TYPE This field shows the type of the physical data item: key, constant,
data, and so on.

CONSTANT
VALUE OR
DOMAIN

This field contains the constant value associated with this data item
in this view, if there is one. If there is no constant value, this field
contains the domain to which the physical data item belongs, if there
is one. If there is neither constant value nor domain associated with
the data item, this field remains blank.

LOGICAL DATA
ITEM

This field contains the logical name associated with the physical data
item on the Directory. This name must appear as a column in the
base view and can be found by following the hierarchy of views to the
lowest level.
If the view being reported accesses a base view, the name of the
base view is given underneath the logical data item name, preceded
by the literal “FROM VIEW:”.
If the base view is replaced and the column in the derived view no
longer maps onto a lower level view, the literal “..VIEW HIERARCHY
INCONSISTENT” displays.
If more than five derived views exist between the reported view and
the base view, the literal “..MORE THAN 6 LEVELS ...” displays.

COLUMN The name in this view that refers to the logical data item. This
column name is the same as the source column name, unless this
view specifies an alternative name in its column definition.

Appendix B Example RDM reports

284 P25-8220-45

Other views can use this reported view. The second half of the report
shown in preceding figure details the fields directly used by other views.
The following information explains those fields:

Field Explanation
FOR VIEW The view name for which data is provided by this

view.
COLUMN The name that the derived view (field 7) uses to

refer to the source column (field 9). This column
name is the same as the source column name,
unless this view specifies an alternative name in
its column definition.

SOURCE
COLUMN

Matches the column in the base view, given in
field 6.

DATA TYPE The type of field in the higher level view (the view
given in field 7).

CONSTANT
VALUE /
DOMAIN

Provides the constant value for the column when
used in the view given in field 7.

D/OV Indicates whether the domain override facility is
used in the column definition of the derived view.
Field 4 describes the constant value or domain if
this field has no value.

USERS List of the authorized users of the view.
COMMENTS Any comments on the Directory for the view.
ACCESS
DEFINITION

The access definition of the view.

USED BY
DATABASES

The databases to which this view is connected.

Domain usage report format description

RDM Administration Guide 285

Domain usage report format description
You can generate two Domain Usage reports. The format of both is the
same, as illustrated in the following figure. The difference is in the scope
of the report: the first report describes all domains held on the Directory;
the second report describes selected domains. Note that you can select
more than one domain for the report on selected domains.

The Domain Usage report lists the content of each domain and any
comments. It then describes the physical and logical data items that use
the domain, the base views that directly use the logical data item, and
any alias or constant values associated with the logical data item.

The following figure shows the Domain Usage report. The table following
the figure provides field descriptions.

 DECEMBER 8TH, 1996 10:21:22 PAGE 1
 DOMAIN USAGE REPORT PART 2 - * SELECTED DOMAINS *

 DOMAIN NAME: STATES

 ------------ DATA ITEMS ------------
PHYSICAL| LOGICAL USED DIRECTLY IN VIEWS COLUMN CONSTANT VALUE
----------------------------------- ---------------------- --------------- --------------

BRANSTAT BRANCH-STATE BRANCH
CADRBSTA CADR-BILL-STATE
CADRSSTA CADR-SHIP-STATE
CUSTSTAT CUSTOMER-STATE CUSTOMER
ORDRSTAT ORDER-SHIP-STATE ORDER

COMMENTS :

 VALIDATION TABLE: STATES
 VALIDATION EXIT:
RETRIEVAL VALIDATION: NO
 VALIDATION TYPE: TABLE
 NULLS PERMITTED: YES
 FUNCTION: STRING
 UNITS: N/A
 FORMAT: CHARACTER
 SIGN: SIGNED
 LENGTH: 2
 DECIMAL PLACES: 0
 MINIMUM VALUE:
 MAXIMUM VALUE:
 NULL VALUE:
 DEFAULT VALUE:

Appendix B Example RDM reports

286 P25-8220-45

 DECEMBER 8TH, 1996 10:21:22 PAGE 2
 DOMAIN USAGE REPORT PART 2 - * SELECTED DOMAINS *

 DOMAIN NAME: ZIP-CODES

 ------------ DATA ITEMS ------------
PHYSICAL| LOGICAL USED DIRECTLY IN VIEWS COLUMN CONSTANT VALUE
----------------------------------- ---------------------- --------------- --------------

BRANZIPC BRANCH-ZIP-CODE BRANCH
CADRBZIP CADR-BILL-ZIP-CODE
CADRSZIP CADR-SHIP-ZIP-CODE
CUSTZIPC CUSTOMER-ZIP-CODE CUSTOMER
ORDRZIPC ORDER-SHIP-ZIP-CODE ORDER

COMMENTS :

 Valid range for all ZIP-CODES is between '00000' and '99999'.

 VALIDATION TABLE:
 VALIDATION EXIT:
RETRIEVAL VALIDATION: NO
 VALIDATION TYPE: RANGE
 NULLS PERMITTED: YES
 FUNCTION: STRING
 UNITS: N/A
 FORMAT: CHARACTER
 SIGN: SIGNED
 LENGTH: 5
 DECIMAL PLACES: 0
 MINIMUM VALUE: 00000
 MAXIMUM VALUE: 99999
 NULL VALUE:
 DEFAULT VALUE:

Domain usage report format description

RDM Administration Guide 287

The table below explains the fields for the previous figures:

Field Explanation
PHYSICAL Physical data items to which the domain is

connected.
LOGICAL The logical name for each physical data item

given in field 1. This report lists only the logical
data item names used in base views.

USED
DIRECTLY IN
VIEWS

Names of the base views that use the data items.

COLUMN Column name for the logical data item. The
column name is the same as the logical data item
name unless the views specify alternative names
in their column definitions. The column name
always takes precedence over the equivalent
logical data item name when the two differ
because the column is referred to by application
programs, SPECTRA, and derived views.

CONSTANT
VALUE

Constant value for the column, if any.

COMMENTS Comments held on the Directory for the domain.

Appendix B Example RDM reports

288 P25-8220-45

Logical Data Item report format description
You can generate three Logical Data Item reports. The format of all three
is the same, as illustrated in the following figure. The difference is the
scope of the report: the first report describes all the logical data items in
all views; the second describes all views connected to specified
databases (note that you can specify more than one database); and the
third describes selected views.

The Logical Data Item Cross Reference report describes logical data
items, the base and derived views in which they are used and any column
names, along with any constant values or domains that are associated
with them. The report is presented in logical data item order.

Logical Data Item report format description

RDM Administration Guide 289

The following figure shows the Logical Data Item Cross Reference report.
The table following the figure provides field descriptions.

 DECEMBER 8TH, 1996 10:12:11 PAGE 1
 LOGICAL DATA ITEM CROSS-REFERENCE REPORT PART 2 FOR : EXAMPL

VIEW FROM BASE VIEW COLUMN CONSTANT VALUE DOMAIN
 OVERRIDE
------------------------------ ------------ --------------- ---------------- ---------

LOGICAL DATA ITEM : BRANCH-ADDRESS PHYSICAL DATA ITEM : BRANADDR DOMAIN :

BRANCH BRANCH-ADDRESS
BRANCH-LOCATION BRANCH BRANCH-ADDRESS

LOGICAL DATA ITEM : BRANCH-CITY PHYSICAL DATA ITEM : BRANCITY DOMAIN :

BRANCH BRANCH-CITY
BRANCH-LOCATION BRANCH BRANCH-CITY
REGION-111-INFO BRANCH BRANCH-CITY

LOGICAL DATA ITEM : BRANCH-DELIVERY-ROUTE PHYSICAL DATA ITEM : BRANDELV DOMAIN : DELIVERY-ROUTES

BRANCH BRANCH-DELIVERY-ROUTE
BRANCH-LOCATION BRANCH BRANCH-DELIVERY-ROUTE

LOGICAL DATA ITEM : BRANCH-ID PHYSICAL DATA ITEM : BRANCTRL DOMAIN :

ADD-CUSTOMER-DEFAULT-VALUES CUSTOMER CUSTOMER-BRANCH
BRANCH BRANCH-NUMBER
BRANCH-LOCATION BRANCH BRANCH-NUMBER
BRANCH-PRODUCTS BRANCH-NUMBER
BRANCH-STOCK BRANCH BRANCH-NUMBER
BRANCHES-IN-REGION BRANCH BRANCH-NUMBER
CUSTOMER CUSTOMER-BRANCH
CUSTOMER-INSERT-INTEGRITY BRANCH-NUMBER
CUSTOMER-INSERT-INTEGRITY-2 CUSTOMER-BRANCH
CUSTOMER-INSERT-INTEGRITY-3 CUSTOMER-BRANCH
CUSTOMER-UPDATE-INTEGRITY CUSTOMER-BRANCH
CUSTOMER-UPDATE-INTEGRITY-2 CUSTOMER-BRANCH
CUSTOMER-UPDATE-INTEGRITY-3 CUSTOMER-BRANCH
CUSTOMER-UPDATE-INTEGRITY-4 CUSTOMER-BRANCH
CUSTOMERS-IN-TEXAS CUSTOMER CUSTOMER-BRANCH
CUSTOMERS-IN-TEXAS-2 CUSTOMER CUSTOMER-BRANCH
DELETE-REGION-WITH-NO-CUSTOMER BRANCH-NUMBER
ORDER ORDER-BRANCH
PRODUCTS-IN-BRANCH BRANCH BRANCH-NUMBER
PRODUCTS-IN-REGION BRANCH BRANCH-NUMBER
REGION-111-INFO BRANCH BRANCH-NUMBER
STOCK STOCK-BRANCH

Appendix B Example RDM reports

290 P25-8220-45

The table below explains the fields for the previous figure:

Field Explanation
LOGICAL DATA
ITEM:

The logical data item name.

PHYSICAL
DATA ITEM:

The physical data item to which the logical data item maps.

DOMAIN: The name of the domain used by the data item.
VIEW The views that use the logical data item.
FROM BASE
VIEW

If the views in field 4 use the logical data item via intermediate
access to other views, this field contains the name of the view that
uses the logical data item directly. If the view in field 4 uses the
logical data item directly, this field remains empty.

COLUMN The column name that refers to this logical data item. This column
name is the same as the logical data item name, unless the views
specify alternative column names in their column definitions.

CONSTANT
VALUE

The constant value displays here if the logical data item has one.

DOMAIN
OVERRIDE

This field contains a “Y” if the domain override feature is enabled.

In addition to the three DBA reports, a fourth option allows you to produce
an online report for a specified view. This report is the same as the third
DBA report on selected views except that it produces the report file while
you wait.

To produce the online report, select option 4 and enter the view name in
response to the LV: prompt. After a pause when the RDM Reporting
facility creates the report file CSI DBA QCK.DAT in your default directory,
you are prompted to press RETURN for next page or press END to stop:

♦ Press RETURN to redisplay the LV: prompt.

♦ Type END and press RETURN to redisplay the initial Directory
Report Request menu (see the screens illustrated under “Stage
one—specifying the reports to be produced” on page 264).

Physical Data Item report format description

RDM Administration Guide 291

Physical Data Item report format description
You can generate three Physical Data Item reports. The format of all
three is the same, as illustrated in the following figure. The difference
between them lies in the scope of the report: the first report describes all
data sets held on the Directory; the second describes data sets
connected to a specified database and the third describes selected data
sets. Note that you can select more than one database or data set for
the second and third reports. All three reports first display details of any
indices connected to each data set, followed by the physical to logical
data item cross-reference.

The Physical Data Item Cross Reference report describes any connected
indices, the physical data items, the logical data items to which they map,
the columns used to access the logical data items, the base views they
are used in, and any constant values. Physical data items are presented
by data set in the order they are defined. Where a physical data item is
subdefined, the parent data item is followed by its sub-data-items.

In addition to the three Physical Data Item reports, a fourth option allows
you to produce an online report showing details of the indices connected
to the specified database.

To produce the online report, select option 4, and enter the database
name in response to the DBNAME: prompt. After a pause when the
RDM Reporting facility creates the report file CSI XREF2 QCK.DAT in
your default directory, you are prompted to press RETURN for next page
or press END to stop:

♦ Press RETURN to redisplay the DBNAME: prompt.

♦ Type END and press RETURN to redisplay the initial Directory
Report Request menu (see the screens illustrated under “Stage
one—specifying the reports to be produced” on page 264).

The index details in the report file CSI XREF2 QCK.DAT are presented in
the same format as the index details shown in the following figure.
However, the physical to logical data item details are omitted.

Appendix B Example RDM reports

292 P25-8220-45

The following figure shows the Physical Data Item Cross Reference
report. The table following the figure provides field descriptions.

 DECEMBER 8TH, 1996 10:12:11 PAGE 1
 PHYSICAL DATA ITEM CROSS REFERENCE REPORT - PART 2 FOR EXAMPL
 PRIMARY DATA SET : BRAN
RECORD PHYSICAL LOGICAL
CODE DATA ITEM DATA ITEM COLUMN OR CONSTANT VALUE USED DIRECTLY BY VIEWS
----- --------- --------- ------------------------ ---------------------

INDEX NAME:- RN FOR DATABASE:- EXAMPL AND FILE:- BRAN
 CORRUPT-ACTION: OPERATOR
 NULLS SORTED: HIGH
 READ VERIFY: YES
 FILE-SPECIFICATION: RDM_EXAMPLE:BRAN.IDX
 SHADOW-FILE-SPECIFICATION:

 The secondary key is needed on the foreign key REGN.

 KEY NAME:- BRANSKRE
 UNIQUE = NO
 DIRECTION = BOTH
 ORDERING = NO
 TYPE = DIRECT
 SORT = NO
 % DUPLICATES ALLOWED = 40

 Allow key access to the Branch data set using the REGION-NUMBER

 foreign key.

 DATA ITEMS IN KEY:-
 BRANREGN

DATA ITEM CROSS-REFERENCE :-

 BRANROOT
 BRANCTRL BRANCH-ID STOCK-BRANCH STOCK
 BRANCTRL BRANCH-ID ORDER-BRANCH ORDER
 BRANCTRL BRANCH-ID BRANCH-NUMBER BRANCH-PRODUCTS
 BRANCTRL BRANCH-ID BRANCH-NUMBER DELETE-REGION-WITH-NO-CUSTOMER
 BRANCTRL BRANCH-ID BRANCH-NUMBER BRANCH
 BRANCTRL BRANCH-ID BRANCH-NUMBER CUSTOMER-INSERT-INTEGRITY
 BRANCTRL BRANCH-ID CUSTOMER-BRANCH CUSTOMER-INSERT-INTEGRITY-2
 BRANCTRL BRANCH-ID CUSTOMER-BRANCH CUSTOMER-INSERT-INTEGRITY-3
 BRANCTRL BRANCH-ID CUSTOMER-BRANCH CUSTOMER-UPDATE-INTEGRITY
 BRANCTRL BRANCH-ID CUSTOMER-BRANCH CUSTOMER-UPDATE-INTEGRITY-2
 BRANCTRL BRANCH-ID CUSTOMER-BRANCH CUSTOMER-UPDATE-INTEGRITY-3
 BRANCTRL BRANCH-ID CUSTOMER-BRANCH CUSTOMER-UPDATE-INTEGRITY-4

 DECEMBER 8TH, 1996 10:12:11 PAGE 2
 PHYSICAL DATA ITEM CROSS REFERENCE REPORT - PART 2 FOR EXAMPL
 PRIMARY DATA SET : BRAN
 RECORD PHYSICAL LOGICAL
 CODE DATA ITEM DATA ITEM COLUMN OR CONSTANT VALUE USED DIRECTLY BY VIEWS
 ----- -------- --------- ---------------------- --------------------
 BRANREGN BRANCH-REGION-ID BRANCH-REGION BRANCH
 BRANREGN BRANCH-REGION-ID REGION-NUMBER CUSTOMER-INSERT-INTEGRITY-3
 BRANREGN BRANCH-REGION-ID BRANCH-REGION CUSTOMER-UPDATE-INTEGRITY-3
 BRANDELV BRANCH-DELIVERY-ROUTE BRANCH-DELIVERY-ROUTE BRANCH
 BRANSLSQ BRANCH-SALES-QUOTA BRANCH-SALES-QUOTA BRANCH
 BRANSTFQ BRANCH-STAFF-QUOTA BRANCH-STAFF-QUOTA BRANCH
 BRANLKST

Physical Data Item report format description

RDM Administration Guide 293

The table below explains the fields for the previous figure:

Field Explanation
INDEX NAME: FOR
DATABASE: AND FILE:

The index name, database name and data set name.

CORRUPT-ACTION: The action taken if the index is corrupt.
♦ OPERATOR marks the index as unavailable and

prompts the operator.
♦ CONTINUE marks the index as unavailable and

continues processing without using the corrupt index
file.

♦ POPULATE performs a dynamic populate on the
corrupt index.

NULLS SORTED: Where in the collating sequence nulls are sorted.
READ VERIFY: Whether the PDM checks if the index is corrupt before

reading it.
FILE SPEC: SHADOW
FILE SPEC:

Main and shadow file specifications.

KEY NAME: The name of the secondary key.
UNIQUE = Whether or not the index supports duplicate secondary

keys.
DIRECTION= The direction in which the keys are sorted in the file

(forward, reverse or both).
ORDERING= Whether or not the index uses pointers to ensure that

records with identical keys are retrieved in the order they
occur in the data set file.

TYPE = The pointer type stored with the secondary key in order to
make sure that records with identical keys are retrieved in
the order they occur in the file. Indirect using a control key
or Direct using Relative Record Number (RRN).

Appendix B Example RDM reports

294 P25-8220-45

Validation Table Usage report format description
You can generate two Validation Table Usage reports. The format of
both is the same, as illustrated in the following figure. The difference
between them lies in the scope of the report; the first report describes all
validation tables on the Directory; the second report describes selected
validation tables. Note that you can select more than one validation
table.

The Validation Table report lists the values given in each validation table,
any comments, and the domains that use the validation table.

The figure below shows the Validation Table report. The table following
the figure provides field descriptions.

 DECEMBER 12TH, 1996 09:35:33 PAGE 1
 VALIDATION TABLE REPORT PART 2 - * SELECTED TABLES *

 VALIDATION TABLE: CUSTOMER-CLASS

COMMENTS :

PERMITTED DATA VALUES

 001
 002
 003

USED IN DOMAINS

 CUSTOMER-CLASS

The following table explains the fields in the above figure.

Field Explanation
1 Comments held on the Directory for the validation table.
2 A list of valid values for a data item using a domain to

which this validation table applies.
3 A list of domains that use this validation table.

RDM Administration Guide 295

C
Example user validation exits

This appendix contains sample validation exists in C, COBOL, and
PASCAL. You can use validation exits to write more complex validation
logic than is available using Range and Validation tables.

You define validation exits in the Directory using the DBA Domains
functions: enter E in the Domain Validation Type field, enter the
8-character Validation Exit name in the Domain Validation Exit Name
field and then connect the Domain to the Physical Field you want the
Domain to apply. Then, using the following examples as guidelines,
code, compile, and link your program.

At run time, when RDM is processing a field that has Validation Exit
defined and you have a logical name called CSI_VAL_EXIT pointing to
the validation image, RDM will dynamically load the image, find the exit
program in the image and pass the parameters for your program to
execute.

The parameter list consists of a list of 11 addresses.

Addr1 Address of the return code. The return code is a 4-byte
binary integer. The values the validation exit should set
are:

1 = Valid value or valid exit name

0 = Invalid value

Addr2 Address of the 8-character exit name.

Addr3 Address of the 30-character user name.

Appendix C Example user validation exits

296 P25-8220-45

Addr4 Address of the 30-character view name.

Addr5 Address of the 30-character column name.

Addr6 Address of the value to be validated. The length and
format may vary.

Addr7 Address of the 1-character field type:

C Character

P Packed

Z Zoned

B Binary

F Floating Point

Addr8 Address of the length of the value. This is a 4-byte
binary integer.

Addr9 Address of the 1-character sign flag for this field.

Y The value is signed.

N The value is not signed.

Addr10 Address of the number of decimals in the value. This is
a 4-byte binary integer.

Addr11 Address of the 1-character operation type. This field
indicates the type of RDML request that caused the call
of the validation exit.

G GET RDML

 I INSERT RDML

U UPDATE RDML

O Open of the view. Exit should return a GOOD status
for this type.

Validation Table Usage report format description

RDM Administration Guide 297

Examples

♦ This example uses COBOL to illustrate how to define a user exit.
IDENTIFICATION DIVISION.

PROGRAM-ID. ROUTEXIT.

*

* This is an example of a SUPRA RDM validation exit.

* * It checks that the data passed to it is numeric.

*

* If so, it returns a 'good' status (1), otherwise a 'bad'

* status (0).

*

*

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

*

* All parameters must be declared in the LINKAGE SECTION.

*

*

01 RETURN-STATUS PIC S9(8) COMP.

* Status code returned to RDM indicating success or failure.

* Success = 1, Failure = 0.

01 EXIT-NAME PIC X(8).

* Contains the name of the exit.

01 USER-NAME PIC X(30).

* The RDM user name.

01 VIEW-NAME PIC X(30).

* The name of the current RDM view.

Appendix C Example user validation exits

298 P25-8220-45

01 COLUMN-NAME PIC X(30).

* The RDM column name.

01 DATA-BUFFER PIC X(2).

* The area containing the data to be validated. The PICTURE clause

* must reflect the length of the data area. It is only 2 bytes in

* length in this example. It may be longer than really necessary.

* Its true length is specified in the DATA-LENGTH parameter.

01 DATA-FORMAT PIC X.

* Single character indicating the type of data in the DATA-BUFFER.

01 DATA-LENGTH PIC S9(8) COMP.

* The actual length of the data in the DATA-BUFFER.

01 SIGNED PIC X.

* Sign indicator. Y if signed, otherwise N.

01 DECIMALS PIC S9(8) COMP.

* Number of decimal places allowed.

01 OPERATION PIC X.

* The RDM operation being performed.

* G = Get, I = Insert, U = Update, D = Delete.

Validation Table Usage report format description

RDM Administration Guide 299

PROCEDURE DIVISION

 USING

 RETURN-STATUS

 EXIT-NAME

 USER-NAME

 VIEW-NAME

 COLUMN-NAME

 DATA-BUFFER

 DATA-FORMAT

 DATA-LENGTH

 SIGNED

 DECIMALS

 OPERATION.

PARAGRAPH-NAME.

 IF DATA-BUFFER IS NUMERIC

 MOVE 1 TO RETURN-STATUS

 ELSE

 MOVE 0 TO RETURN-STATUS.

 EXIT PROGRAM.

Appendix C Example user validation exits

300 P25-8220-45

♦ This example uses PASCAL to illustrate how to define a user exit.
MODULE sample val exit;

(**)

(* This is a sample Pascal Validation Exit Module. *)

(**)

TYPE

 char8 = Packed Array [1..8] Of Char;

 char30 = Packed Array [1..30] Of Char;

 char60 = Packed Array [1..60] Of Char;

[GLOBAL] PROCEDURE NOTBLANK(

 VAR status : Integer;

 exit name : char8;

 user name : char30;

 view name : char30;

 col name : char30;

 value : char60;

 format : char;

 length : Integer;

 signed : Char;

 decimals : Integer;

 operation : Char);

Validation Table Usage report format description

RDM Administration Guide 301

(***)

(* Description - This Procedure checks if the data passed via *)

(* the variable VALUE begins with a Blank, if so, a*)

(* status of 0 is passed back to indicate an *)

(* invalid value, otherwise, a 1 is returned to *)

(* indicate a valid value. *)

(* Input Parameters : *)

(* exit name : 8 character validation exit name, i.e., the *)

(* name of this procedure. *)

(* user name : 30 character RDM user name. *)

(* view name : 30 character View name. *)

(* col name : 30 character Column name. *)

(* value : 60 character buffer containing the data to be *)

(* validated. As this buffer is 60 bytes long, *)

(* this procedure can be used by any column with *)

(* length of 60 bytes or less. NOTE that if you *)

(* ---- *)

(* require a longer buffer, you must change this *)

(* parameter ! The parameter LENGTH gives the *)

(* actual length of the data. *)

(* format : 1 character data type. *)

(* length : 4 Byte integer containing the data length. *)

(* signed : 1 character sign indicator, Y if signed, *)

(* N otherwise. *)

(* decimals : 4 Byte integer containing the number of decimal*)

(* places allowed. *)

(* operation: 1 Byte character RDM operation type. *)

(* G for Get, I for Insert, U for Update, etc. *)

(* *)

(* Output Parameters : *)

(* status : 4 Byte integer to contain result of validation,*)

(* 1 if data is valid, 0 otherwise. *)

(***)

Appendix C Example user validation exits

302 P25-8220-45

BEGIN

 If (Operation <> '0') Then Begin

 If (value[1] = ' ') Then

 status := 0 Return Bad status

 Else

 status := 1; Return Good status

 End

 Else Always return good
status

 status := 1; for Open

END;

END.

♦ This example shows how to compile the PASCAL exit module.
$PASCAL SAMPLE_VAL_EXIT

!$ This command will compile the module which resides in a file

!$ called SAMPLE_VAL_EXIT.PAS and puts the object module in a file

!$ called SAMPLE_VAL_EXIT.OBJ which will be used by the LINKER later.

♦ This example shows how to link the PASCAL exit module, after it is
compiled.

! This is a sample option file for linking the sample validation

! exit module. It is used in the following form:

! LINK/SHARE=SAMPLE_VAL_EXIT.EXE SAMPLE_VAL_EXIT/OPT

! where sample val exit.exe is the name of the Shareable image

! being created. It is this name that you assign the Logical

! name CSI_VAL_EXIT to, e.g.

! $Define CSI_VAL_EXIT dev :[directory]SAMPLE_VAL_EXIT.EXE

!

! Note all validation exit names must be made UNIVERSAL at link

! time.

SAMPLE_VAL_EXIT ! Module containing validation exit routines.

UNIVERSAL=NOTBLANK ! Must be UNIVERSAL in order for RDM to pick

[, EXIT2, EXIT3 ...] ! up at Run Time. THIS IS A REQUIREMENT.

GSMATCH=ALWAYS,0,0 ! To ensure upward capability.

! All exits can come from the same module or multiple modules

! containing one or more exit routines.

Validation Table Usage report format description

RDM Administration Guide 303

♦ This example uses C to illustrate how to define a user exit.
/**

* This is an example of an RDM validation exit. It checks that

* the data passed to it contains no digits and is not all blank.

**/

#include <ctype.h>

CITYEXIT(p_status, /* status to be returned - integer */

p_exit_name, /* name of validation exit - 8 chars */

p_user_name, /* name of RDM user - 30 chars */

p_view_name, /* name of RDM view - 30 chars */

p_column_name, /* name of column in view - 30 chars */

p_data_buffer, /* data to be validated - any length*/

p_data_format, /* format of data - 1 char */

p_data_length, /* length of data - integer */

p_signed, /* data signed or not - 1 char */

p_decimals, /* number of decimal places - integer */

p_operation) /* RDM operation - 1 char */

int *p_status;

char *p_exit_name;

char *p_user_name;

char *p_view_name;

char *p_column_name;

char *p_data_buffer;

char *p_data_format;

int *p_data_length;

char *p_signed;

int *p_decimals;

char *p_operation;

Appendix C Example user validation exits

304 P25-8220-45

/**

* ensure its all uppercase and does not contain digits *

* and is not all spaces. *

**/

 int i; /* loop control variable */

 char spaces[]=" "; /* constant */

 p status = 1; / indicate success until proven */

 /* otherwise */

 for (i = 0; i < *p data length; i++)

 if (isdigit(p data buffer[i]))

 p status = 0; / indicate failure */

 break; /* break loop */

 if (strncmp(p data buffer,spaces,13) == 0)

 p status = 0; / indicate failure */

 return; /* return to caller */

RDM Administration Guide 305

D
Example database

This appendix describes the EXAMPL database provided with SUPRA
Server. The database described here is used throughout this manual for
illustration. All three schemas, internal, conceptual, and external, are
described in detail to illustrate the access paths and maintenance
function constraints imposed at the different levels.

Relations in the internal schema
The internal schema consists of the physical description of the database
and contains a mix of primary, related, and RMS data sets known as
base relations. These data sets are shown in figure below. Note that the
dashed lines represent foreign keys, and the solid lines represent
linkpaths.

INDEXINDEXINDEX

REGN BRAN PROD ORDR CUST

STCK

ST ST

ORDT

OD OD

Appendix D Example database

306 P25-8220-45

The data sets that comprise the internal schema are made up of physical
data items and linkpaths. The following bulleted list shows each physical
data item in a data set, its equivalent logical data item name (used in
base views), any foreign key relationships, and connected domains or
constant values.

♦ RMS data set REGN

File

Physical data
item

Logical data
item

Format

Domain or constant
value

REGN REGNCTRL=0002 REGION-ID PIC X(2) REGION
REGN REGNNAME=0030 REGION-NAME PIC X(30)

♦ PDM primary data set BRAN

File

Physical data
item

Logical data
item

Format

Domain or constant
value

BRAN BRANROOT=0008
BRAN BRANCTRL=0004 BRANCH-ID PIC X(4)
BRAN BRANNAME=0030 BRANCH-NAME PIC X(30)
BRAN BRANADDR=0040 BRANCH-

ADDRESS
PIC X(40)

BRAN BRANCITY=0040 BRANCH-CITY PIC X(40)
BRAN BRANSTAT=0002 BRANCH-STATE PIC X(2) STATES
BRAN BRANZIPC=0005 BRANCH-ZIP-

CODE
PIC X(5) ZIP-CODES

BRAN BRANREGN=0002 BRANCH-REGION-
ID

PIC X(2) BRANCH-REGION

BRAN BRANDELV=0002 BRANCH-
DELIVERY-ROUTE

PIC X(2) DELIVERY-ROUTES

BRAN BRANSLSQ=0009 BRANCH-SALES-
QUOTA

PIC
S9(7)V9(2)
COMP

BRAN BRANSTFQ=0009 BRANCH-STAFF-
QUOTA

PIC S9(9)
COMP

BRAN BRANLKST=0008 Linkpath to STCK

Relations in the internal schema

RDM Administration Guide 307

 Notes

- BRANCH-NUMBER is a foreign key in the related data set
STCK as STOCK-BRANCH and in the primary data set CUST as
CUSTOMER-BRANCH.

- REGION-NUMBER is a foreign key in the primary data set
BRAN as BRANCH-REGION.

- BRANCH-REGION has a secondary key (index) associated with
it.

- Two domains are used for REGION and BRANCH-REGION
because BRANCH-REGION may be set to the NULL value
during a nullify delete.

♦ PDM related data set STCK

File

Physical data
item

Logical data item

Format

Domain or
constant value

STCK STCKBRAN=0004 STOCK-BRANCH-ID PIC X(4)
STCK BRANLKST=0008 Linkpath to BRAN
STCK STCKPROD=0008 STOCK-PRODUCT-ID PIC X(8)
STCK PRODLKST=0008 Linkpath to PROD
STCK STCKQNTY=0009 STOCK-QUANTITY PIC S9(9)

COMP

STCK STCKBINL=0003 STOCK-BIN-LOCATION PIC X(3)
STCK STCKYTDS=0009 STOCK-YEAR-TO-DATE-

SALES
PIC
S9(7)V9(2)
COMP

♦ PDM primary data set PROD

File

Physical data
item

Logical data item

Format

Domain or
constant value

PROD PRODROOT=0008
PROD PRODCTRL=0008 PRODUCT-ID PIC X(8)
PROD PRODDESC=0040 PRODUCT-DESCRIPTION PIC X(40)

Appendix D Example database

308 P25-8220-45

File

Physical data
item

Logical data item

Format

Domain or
constant value

PROD PRODQUAN=0009 PRODUCT-QUANTITY PIC X(9)
PROD PRODPRCE=0009 PRODUCT-PRICE PIC

S9(7)V9(2)
COMP

PROD PRODGRUP=0003 PRODUCT-GROUP PIC X(3)
PROD PRODLKST=0008 Linkpath to STCK
PROD PRODLKOD=0008 Linkpath to ORDT

♦ PDM primary data set CUST

File

Physical data
item

Logical data item

Format

Domain or
constant value

CUST CUSTROOT=0008
CUST CUSTCTRL=0008 CUSTOMER-ID PIC X(8)
CUST CUSTNAME=0060 CUSTOMER-NAME PIC X(60)
CUST CUSTADDR=0040 CUSTOMER-ADDRESS PIC X(40)
CUST CUSTCITY=0030 CUSTOMER-CITY PIC X(30)
CUST CUSTSTAT=0002 CUSTOMER-STATE PIC X(2) STATES
CUST CUSTZIPC=0005 CUSTOMER-ZIP-CODE PIC X(5) ZIP-CODES
CUST CUSTFONE=0013 CUSTOMER-PHONE-

NUMBER
PIC X(13)

CUST CUSTFAXX=0013 CUSTOMER-FAX-
NUMBER

PIC X(13)

CUST CUSTCLAS=0003 CUSTOMER-CLASS PIC X(3) CUSTOMER-
CLASS

CUST CUSTCRCO=0002 CUSTOMER-CREDIT-
CODE

PIC X(2) CREDIT-CODES

CUST CUSTCRLM=0009 CUSTOMER-CREDIT-
LIMIT

PIC S9(9)
COMP

CREDIT-LIMIT

CUST CUSTBRAN=0004 CUSTOMER-BRANCH-ID PIC X(4)

Relations in the internal schema

RDM Administration Guide 309

♦ PDM primary data set ORDR

File

Physical data
item

Logical data item

Format

Domain or
constant value

ORDR ORDRROOT=0008
ORDR ORDRCTRL=0006 ORDER-ID PIC X(6)
ORDR ORDRDATE=0008 ORDER-DATE PIC X(8)
ORDR ORDRSHDT=0008 ORDER-SHIP-DATE PIC X(8)
ORDR ORDRAMNT=0009 ORDER-AMOUNT PIC

S9(7)V9(2)
COMP

ORDR ORDRBRAN=0004 ORDER-BRANCH-ID PIC X(4)
ORDR ORDRLKOD=0008 Linkpath to ORDT
ORDR ORDRCUST=0008 ORDER-CUST-ID PIC X(8)
ORDR ORDRSHIP=0090 ORDER-SHIP-TO
ORDR ORDRADDR=0040 ORDER-SHIP-ADDRESS PIC X(40)
ORDR ORDRCITY=0030 ORDER-SHIP-CITY PIC X(30)
ORDR ORDRSTAT=0020 ORDER-SHIP-STATE PIC X(02) STATES
ORDR ORDRZIPC=0050 ORDER-SHIP-ZIP-CODE PIC X(05) ZIP-CODES
ORDR ORDRFONE=0013 ORDER-SHIP-PHONE PIC X(13)

♦ PDM related data set ORDT

File

Physical data
item

Logical data item

Format

Domain or
constant value

ORDT ORDTORDR=0006 DETAIL-ORDER-ID PIC X(6)
ORDT ORDRLKOD=0008 Linkpath to ORDR
ORDT ORDTITEM=0002 DETAIL-ITEM-NUMBER PIC X(2)
ORDT ORDTPROD=0008 DETAIL-PRODUCT-ID PIC X(8)
ORDT PRODLKOD=0008 Linkpath to PROD
ORDT ORDTQNTY=0009 DETAIL-ORDER-

QUANTITY
PIC S9(9)
COMP

Appendix D Example database

310 P25-8220-45

Base views in the conceptual schema
The conceptual schema is described by base views that access the data
sets directly by using the logical data item names. In some cases, the
base view replaces the logical data item name with an alternative column
name (the base view REGION uses the column name
REGION-NUMBER instead of the logical data item name REGION-NO).
In other cases, the base view uses the logical data item name as the
column name.

Base View: REGION

View Text:
KEY REGION-NUMBER = REGION-ID

 REGION-NAME

ACCESS REGN
 WHERE REGION-ID = REGION-NUMBER
 ALLOW ALL

* To restrict deletions of REGIONs that contain branches.

ACCESS BRAN
 WHERE BRANCH-REGION-ID == REGION-ID

Base View: BRANCH

View Text:
KEY BRANCH-NUMBER = BRANCH-ID
 BRANCH-NAME
REQ BRANCH-REGION == BRANCH-REGION-ID = REGION-ID
 BRANCH-ADDRESS
 BRANCH-CITY
 BRANCH-STATE
 BRANCH-ZIP-CODE
 BRANCH-SALES-QUOTA
 BRANCH-STAFF-QUOTA
 BRANCH-DELIVERY-ROUTE
ACCESS BRAN
 WHERE BRANCH-ID = BRANCH-NUMBER
 ALLOW ALL

* To verify that BRANCH-REGION contains a valid region on
* INSERT and UPDATE.

ACCESS REGN
 ONCE
 WHERE REGION-ID == BRANCH-REGION-ID

* To restrict deletions of branches containing customers.
ACCESS CUST
 WHERE CUSTOMER-BRANCH-ID = BRANCH-ID

* To restrict deletions of branches that have stock.
ACCESS STCK
 WHERE STOCK-BRANCH-ID = BRANCH-ID

Base views in the conceptual schema

RDM Administration Guide 311

Base View: PRODUCT

View Text:
KEY PRODUCT-CODE = PRODUCT-ID

 PRODUCT-DESCRIPTION

 PRODUCT-WAREHOUSE-QUANTITY

 PRODUCT-PRICE

 PRODUCT-GROUP

ACCESS PROD
 USING PRODUCT-CODE
 ALLOW ALL

* To restrict deletions of products that are in stock.

ACCESS STCK
 ONCE
 VIA PRODLKST

* To restrict deletions of products that are currently ordered.

ACCESS ORDT

 ONCE

 VIA PRODLKOD

Base View: STOCK

View Text:
KEY STOCK-BRANCH = STOCK-BRANCH-ID = BRANCH-ID

KEY STOCK-PRODUCT = STOCK-PRODUCT-ID = PRODUCT-ID

 STOCK-QUANTITY

 STOCK-BIN-LOCATION

 STOCK-YEAR-TO-DATE-SALES

ACCESS STCK
 WHERE STOCK-BRANCH-ID = STOCK-BRANCH AND
 STOCK-PRODUCT-ID = STOCK-PRODUCT
 ALLOW ALL

* To verify that a valid branch exists on INSERT and UPDATE.

ACCESS BRAN
 ONCE
 WHERE BRANCH-ID = STOCK-BRANCH-ID

* To verify that STOCK-PRODUCT contains a valid product code on
* INSERT and UPDATE.

ACCESS PROD
 ONCE
 WHERE PRODUCT-ID = STOCK-PRODUCT-ID

Appendix D Example database

312 P25-8220-45

Base View: ORDER

View Text:
KEY ORDER-NUMBER = ORDER-ID

REQ ORDER-CUST-NUMBER = ORDER-CUST-ID = CUSTOMER-ID

 ORDER-DATE

 ORDER-SHIP-DATE

 ORDER-SHIP-STREET = ORDER-SHIP-ADDRESS

 ORDER-SHIP-CITY

 ORDER-SHIP-STATE

 ORDER-SHIP-ZIP-CODE

 ORDER-SHIP-PHONE

 ORDER-AMOUNT

REQ ORDER-BRANCH = ORDER-BRANCH-ID = BRANCH-ID

ACCESS ORDR
 WHERE ORDER-ID = ORDER-NUMBER
 ALLOW ALL

* To verify that the customer number is valid on INSERT and
UPDATE.

ACCESS CUST
 ONCE
 WHERE CUSTOMER-ID = ORDER-CUST-ID

* To verify that ORDER-BRANCH is a valid branch number on

* INSERT and UPDATE.

ACCESS BRAN
 ONCE
 WHERE BRANCH-ID = ORDER-BRANCH-ID

Base View: ORDER-DETAIL

View Text:
KEY DETAIL-ORDER-NUMBER = DETAIL-ORDER-ID = ORDER-ID

KEY DETAIL-PRODUCT-NUMBER = DETAIL-PRODUCT-ID = PRODUCT-ID

 DETAIL-ITEM-NUMBER

 DETAIL-ORDER-QUANTITY

ACCESS ORDT

 WHERE DETAIL-ORDER-ID = DETAIL-ORDER-NUMBER

 ALLOW ALL

* To verify that a valid order exists on INSERT and UPDATE.

ACCESS ORDR

 WHERE ORDER-ID = DETAIL-ORDER-ID

* To verify that a valid product exists on INSERT and UPDATE.

ACCESS PROD

 WHERE PRODUCT-ID = DETAIL-PRODUCT-ID

Base views in the conceptual schema

RDM Administration Guide 313

Base View: CUSTOMER

View Text:
KEY CUSTOMER-NUMBER = CUSTOMER-ID

REQ CUSTOMER-NAME

 CUSTOMER-CLASS

 CUSTOMER-ADDRESS

 CUSTOMER-CITY

 CUSTOMER-STATE

 CUSTOMER-ZIPCODE

 CUSTOMER-CREDIT-CODE

 CUSTOMER-CREDIT-LIMIT

REQ CUSTOMER-BRANCH = CUSTOMER-BRANCH-ID = BRANCH-ID

ACCESS CUST
 WHERE CUSTOMER-ID = CUSTOMER-NUMBER
 ALLOW ALL

* To verify that CUSTOMER-BRANCH contains a valid branch on
INSERT
* and UPDATE.

ACCESS BRAN
 ONCE
 WHERE BRANCH-ID = CUSTOMER-BRANCH-ID

Appendix D Example database

314 P25-8220-45

Derived views in the external schema
Once you define your base views of the database, you can derive other
views from them. The derived views can contain columns from one base
view, or columns from several base views. They can allow the same
update options as the base views they access, or they can restrict the
update options. The following three examples show derived views of
increasing complexity:

♦ This derived view is a subset of the BRANCH base view and
excludes the BRANCH-SALES-QUOTA and
BRANCH-STAFF-QUOTA columns.

 Derived View: BRANCH-LOCATION

 View Text:
 KEY BRANCH-NUMBER
 BRANCH-NAME

 REQ BRANCH-REGION

 BRANCH-ADDRESS

 BRANCH-CITY

 BRANCH-STATE

 BRANCH-ZIP-CODE

 BRANCH-DELIVERY-ROUTE

 ACCESS BRANCH
 USING BRANCH-NUMBER
 ALLOW UPDATE

 The figure below shows the base view and the number of columns it
contains and the derived view and the number of columns it obtains
from the base view. It also shows the update options specified for
the derived view.

 BRANCH

 10 columns

Derived ViewBase View

update
only

 BRANCH-LOCATION

 8 columns

Derived views in the external schema

RDM Administration Guide 315

 The derived view BRANCH-LOCATION could then be used by users
who are not allowed to see the two quota columns. When defining
this view, you do not have to enter all of the ACCESS statements that
provide the integrity constraints, nor do you have to rewrite this view if
the physical data set BRAN is broken apart or held in another
physical file of a different name.

 KEY identifies the logical key for the view. BRANCH-REGION does
not have to be required in this view; however, if BRANCH-REGION is
required, the base view will return and access only non-null, valid
data for the column. Also, by specifying that it is required, you
ensure that RDM can validate the required column in the derived
view, thereby avoiding the need for RESETs to the database.

♦ You can design more complex derived views that access more than
one base view. The derived view BRANCHES-IN-REGION accesses
both the REGION and the BRANCH base views to produce a
composite listing of branches within region.

 Derived View: BRANCHES-IN-REGION

 View Text:
 KEY REGION-NUMBER

 REGION-NAME

 KEY BRANCH-NUMBER

 BRANCH-NAME

 ACCESS REGION

 ONCE
 USING REGION-NUMBER

 ACCESS BRANCH
 WHERE BRANCH-REGION = REGION-NUMBER

 ALLOW INSERT UPDATE

 To ensure data integrity, notice that you access BRANCH using a
column, (BRANCH-REGION) that is not being used in BRANCHES-
IN-REGION.

Appendix D Example database

316 P25-8220-45

The figure below shows the names of the two base views accessed
and the number of columns in each and the derived view and the
number of columns it obtains from each base view. It also shows the
update options specified for the derived view.

Derived ViewBase Views

 BRANCH

 10 columns

read
only

read
only

 REGION

 2 columns

 BRANCHES-IN-REGION

 2 columns

 2 columns

 In addition to using two views to create a third derived view, the
update options for the BRANCHES-IN-REGION derived views are
changed. Even though REGION and BRANCH can be updated, the
BRANCHES-IN-REGION view restricts access to read-only. When
accessing a base view with a derived view, you can restrict view
update capability but not extend it. For example, if the BRANCH
base view does not have an ALLOW statement in its access
definition (it was read-only), you would be unable to allow any update
functions in any derived view that uses it.

Derived views in the external schema

RDM Administration Guide 317

♦ The PRODUCTS-IN-REGION derived view lists all products in stock
in a specified region. The derived view accesses four base views for
each row, and allows the user to perform different update functions
on different base views. The following figure shows the base views
and the number of columns in each and the number of columns that
the derived view uses from each accessed base view. It also shows
the update options specified for the derived view.

 Derived View: PRODUCTS-IN-REGION

 View Text:
 KEY REGION-NUMBER

 REGION-NAME

 KEY BRANCH-NUMBER

 BRANCH-NAME

 KEY PRODUCT-CODE = STOCK-PRODUCT = PRODUCT-CODE
 PRODUCT-DESCRIPTION

 ACCESS REGION
 USING REGION-NUMBER
 ALLOW UPDATE DELETE

 ACCESS BRANCH

 WHERE BRANCH-REGION = REGION-NUMBER

 ALLOW ALL

 ACCESS STOCK
 WHERE STOCK-BRANCH = = BRANCH-NUMBER AND
 STOCK-PRODUCT = STOCK-PRODUCT
 ALLOW ALL

 ACCESS PRODUCT
 WHERE PRODUCT-CODE = STOCK-PRODUCT

Appendix D Example database

318 P25-8220-45

Derived ViewBase Views

 BRANCH

 10 columns

 REGION

 2 columns

 STOCK

 5 columns

 PRODUCT

 4 columns

update
and

delete

insert,
update,
delete

read
only

insert,
update,
delete

 BRANCH-IN-REGION

1 column

2 columns

2 columns

1 column

These views are used throughout this manual to illustrate RDM.

RDM Administration Guide 319

Index

*

* in binding a view 149

A

access
authority to use DBAID LIST

command 192
keyed and sequential 83

access definitions
base views 50
derived views 50
examples 69
location in view definition 50
order of access statements 50
parameters

ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,

60, 62, 67
WHERE 64

syntax
generalized access for base

views 52
specific access for base

views 53
syntax for generalized access

for derived views 53
access methods

defining for views 51
run-time 51

access named global views 255
preventing 255

access paths used 207
Access portion of the view

definition 84
access statements

order 50
accessing the database See

Database penetration
ALL, using with DELETE 162
allow specified users access to

named global views 255
ALLOW, access definition

parameter
described 66
maximum 66

allowing data set updates 66
ASI 226
ASI. See Attribute Status

Indicators (ASI)
AT and USING 176
AT with MARK 193
Attribute Status Indicators (ASI)

226
authority for global views 247
authorize other users 128
automatic RDM RESET 166

B

base views
access definitions 50
defining direct reads 60
described 29
enforcing referential integrity 40
specifying logical data items 43
sweeping 40

batch global view creation 248
BATCH_GLOBAL_INPUT 248
bind a view

specified 149
using DBAID 237

blanks in character strings 185
bound views 231, 236

RDM access 51
rebinding 239

boundary condition 78
BYE command 152

Index

320 P25-8220-45

C

cascade delete 100, 120
CAUTIOUS command 153

opposite of SURE command
213

changes to database 131
changing view text 235
character and hexadecimal data

in USING clause of GET
176

character columns and range
checking 104

character data in GO command
180

circular navigation 75
clause

see parameter 58
close a specific view 201
Column Attribute Status

Indicators (ASI) 226
column definitions

described 36
examples 69
for the user view named 218
order 48
parameters

column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45

position in view definition 48
syntax for 37

column descriptor
FIELD-DEFN 169

column name
COLUMN-TEXT 158

column names
defining for views 42
failing to specify 42
making meaningful 42
omitting on the GIVING

parameter 67
column number

specifying in BY-LEVEL 150
COLUMN-DEFN command 154

COLUMN-DEFN DBAID 97
column-name

COLUMN-DEFN 154
columns

causing direct reads for
physical keys 40

displaying description 167
maximum allowed as KEY 38
maximum allowed as

NONUNIQUE KEY 38
modifying consideration 216

COLUMN-TEXT command 158
combining record codes 56
comments

displaying for a column 170
for column in view 158
in Access definitions 147
when editing a view (*) 146

COMMIT 159
after each successful insert,

update or delete 213
and the SUPRA Server

directory 153
disable auto COMMIT 153

compound keys
compound generic keys,

wildcard position in 95
compound non-unique key 89
compound physical keys

and logical keys 48
in the access definition, base

views 60
in the access definition,RMS

data sets 62
compound unique key 87
specifying in the access

definition 59
conceptual schema

described 25
CONST parameter, column

definition 41
constant keys 90
constant values

defining for a column 41
defining for views 47
null values 48
validity checking 48

COPY command 160
copy view definition to another

view 160

Index

RDM Administration Guide 321

creating a global view file
described 243
in batch 248
interactively 245

creating an input text file 249
CSVGLOBAL 243, 248
current line-size setting 190
current page-size setting 198
current statistics for open views

210

D

data items not found 78
data movement

overriding 67
data relationships

many-to-one
establishing using coded

records 55
one-to-many

establishing using coded
records 55

establishing using SCAN 57
one-to-one

establishing using coded
records 55

establishing using ONCE 57
data retrieval

added selection criteria with
WHERE 64

defining in the access
statement

allowing physical actions 66
defining a direct read 60
ONCE 57
reverse order 57
SCAN 57

efficient method 68
many-to-one relationship 55
one-to-many relationship 55
one-to-one relationship 55
ordering (ORDER) 67
overriding normal data

movement (GIVING) 67
scanning 57
using a linkpath 58
using a secondary key 58

data sets 162
defining for views 54
navigation

defining a data set for
navigation only 67

related to related 56
data type

of partial keys 95
database changes, modifications

required as a result of 131
database name, specifying for

batch global view execution
248

database penetration 75
database sweep 77
scanning 77

database sweep 77
database, how RDM signs on 19
DBA report 262
DBA to bind a view 236
DBA unload-reload

and ordered data sets 68
DBA utility

authorizing users 128
DBAID

commands 139
creating the column definition

36
described 135
help facility 139
invoking 136
maximum lines for a single view

189
password 138
signing on 138
sign-off 208
sign-on 209
test view

considerations 43
to bind a view 237
treatment of line numbers 189

Index

322 P25-8220-45

DBAID commands 139
* 146
= 148
BIND 149, 269
BYE 152, 269
BY-LEVEL 150, 269
CAUTIOUS 153, 269
COLUMN TEXT 270
COLUMN-DEFN 154
COLUMN-TEXT 158
COLUNM DEFN 270
COMMIT 159, 270
COPY 160, 270
DEFINE 161, 270
DELETE 162
DELETE [ALL] 270
DENY 164, 270
EASE 270
EDIT 165, 270
ERASE 166
FIELD DEFN 270
FIELD TEXT 271
FIELD-DEFN 167
FIELD-TEXT 170
FORGET 172, 271
GET 173
GO 179, 271
HELP 271
INSERT 183, 272
KEEP 188, 272
line-number 189
LINESIZE 190, 272
LIST 191, 272
MARK 193, 272
MARKS 194, 272
OPEN 195, 272
PAGESIZE 198, 272
PERMIT 199, 272
PRINT STATS 273
PRINT-STATS 200
programmer’s subset 140
RELEASE 201, 273
REMOVE 202, 273
RENUMBER 203, 273
RESET 204, 273
SAVE 205, 273
SHOW NAVIGATION 273
SHOW-NAVIGATION 207
SIGN OFF 273

SIGN ON 273
SIGN-OFF 208
SIGN-ON 209
STATS 210, 274
STATS OFF 274
STATS ON 274
STATS-OFF 211
STATS-ON 212
substitute for last view name

used 269
SURE 213, 274
to denote a comment line 269
UNDEFINE 214, 274
UPDATE 215
UPDATE VIEW NAME 274
USER LIST 274
USER-LIST 218
VIEW DEFN 274
VIEW-DEFN 219
VIEWS 274
VIEWS FOR USER 274

default validation 96
default values 101
default wildcard characters 93
DEFINE command 161
define new view to DBAID 161
defining access definitions 50

parameters
ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,

60, 62, 67
WHERE 64

syntax for
generalized access for base

views 52
generalized access for

derived views 53
specific access for base

views 53

Index

RDM Administration Guide 323

defining column definitions 36
order of statements 48
parameters

column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45

position of in view definition 48
syntax for 37

defining views
access definition 50
access definition parameters

ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,

60, 62, 67
WHERE 64

column definition
described 36
position 48

column definition parameters
column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45

examples 69
order of column definition

statements 48

syntax
access, generalized 52
access, generalized for

derived views 53
access, specific for base

views 53
syntax for

column definitions 37
tools for defining 35

definitions 275
delete

allowing 66
cascade 120
nullify 119
restrict 118

DELETE 82
delete bound version of a view

239
DELETE command 162
DELETE processing with null

values 100
deletion integrity 108, 116
denote a comment when editing

a view (*) 146
DENY command 164
derived views

and the ALLOW parameter 66
defining a logical read 60
described 29
processing 80
purpose of access definitions

50
specifying source column 46

description of columns in view
154

details of access paths used 207
direct read

causing for physical key
columns 40

defining in the access
statement 60

directory alone 260
disable auto COMMIT 153
disable automatic RESET 188

Index

324 P25-8220-45

display
column names in view by level

of occurrence 150
comments for column in view

158
current statistics for open views

210
full description of columns in

view 154
row for view 173

display
condensed description of a

view 219
domain override 105

specifying 44, 65
domain reports 262
DOMAIN RETRIEVAL validation

enabled 97
domain usage report 262

E

EDIT command 165
EDIT mode 165
edit views 135
efficient data retrieval 68
enabling

DOMAIN RETRIEVAL 97
RU journaling 137

END to stop mass inserting 186
entering comments 147
ERASE command 166
errors during user authorization

199
errors while denying user access

to a view 164
examples

global view report file 258
of view definition 69

exit CSVDBAID image 152
exit DBAID Test Facility 152
exits 104
external schema

described 26

F

FIELD-DEFN command 167
FIELD-DEFN output 169
FIELD-TEXT command 170
file access

to PDM files 17
to RMS files 17

file types
supported by Relational Data

Manager 17
files

sweeping 40
fixed value 90
FKEY

column definition parameter 40
restriction 109

forcing a generic read at PDM
level 176

foreign key 106
nullify 119
rules for defining 109
value integrity 108, 109

FORGET command 172
FROM

access definition parameter 56
in GO command 180

FSI values 277
FSI. See Function Status

Indicators (FSI)
function status indicator,values

225
Function Status Indicators (FSI)

224

G

generalized access syntax
base views 52
derived views 53
described 65

generating reports 268
generic keys

in GET 176
specifying in the access 59

generic read 93
forcing 63
forcing at PDM level 176

Index

RDM Administration Guide 325

GET 80
considerations for using 115
effect of required columns 39
processing of with null values

99
wildcard characters 95

GET command 173
GIVING, access definition

parameter 67
global view file 243, 245
global view input file 249
global views 232, 234

and RDM access 51
and the directory 260
in preference to view definitions

242
GO command 179
group

specifying in batch global input
file 253

H

help facility
DBAID 139

I
identify user to DBAID 209
incremental movement 77
index checking 162
indexes

specifying in the access
definition 58

initialize statistics to zero 212
input text file 249
INSERT 81

effect of required columns 39
INSERT command 183
INSERT processing with null

values 99
insert records accessed through

a secondary key 92
insert rows

longer than one line 184
using the ORDER parameter

68
insert, allowing 66
insertion integrity 110
INT prefix 151

integrity 108. See also referential
integrity

deletion 116
insertion 110
update 112

internal schema
described 24

invalid values in KEY columns
causing RDM to disregard 40

invoking DBAID 136
issue a GET request based on a

single key 179
issue RDM COMMIT request 159
issue RDM DELETE request 162
issuing a RESET 188

J

join compatibility 105

K

KEEP command 188
KEY columns

disregarding null occurences in
40

key value 87
key values in UPDATE command

216
KEY, column definition parameter

38
keyed access 83
keys 86

partial values 93
keys specified in GET 176
keys. See also logical, Physical

L

length
of constant values 47

LEVEL 05 138
level of occurrence 150
lines to be displayed on a

screen/page 198
LINESIZE command 190
linkpaths

defining in the access
statement 58

list all open MARKs 194

Index

326 P25-8220-45

LIST command 191
with OPEN 196

list views 135, 202
lock out other users'

modifications 175
logical data items

cross reference report 262
default for column definitions

43
defining for views 43
how RDM accesses multiple 44
mapping the same value to

many 44
logical keys 78

defining 84
number of 85
specifying more than one

column as 48
logical name GVSCHEMA 241
logical views. See views
logicals, for running

with directory alone 260
with no directory 259
with the directory and global

views 260

M

maintain uniqueness of physical
keys 86

MANTIS and SPECTRA support
for nulls 100

many-to-many relationship
establishing using coded-

records 55
mapping the same value to many

logical data items 44
mapping to a physical key 85
MARK command 193
mark the current position of a row

193
MARKS command 194
mass inserting 186
MASS parameter in INSERT 184
maximum

KEY columns in a view 38
NONUNIQUE KEY columns in

a view 38
maximum keys specified in GET

176

maximum length for a default
value 101

maximum lines in DBAID for a
single view 189

meaningful names, assigning to
columns 42

modifying a view 165
more than one user in a single

PERMIT command 199
multiple column names 42
multiple logical data items

how RDM accesses 44
multiple rows on a single line 184
multiple users in a single

PERMIT command 199

N

navigation 75
defining a data set for

navigation only 67
related data set to related data

set 56
network and RU journaling 137
no validation 103
NONUNIQUE KEY parameter,

column definition 40
nonunique keys 88

combined with key columns 48
retrieval options 174

NULL flag 98
null values 98

and constant values 48
and DELETE processing 100
and GET processing 99
and INSERT processing 99
and required column 99
and UPDATE processing 99
defining for foreign keys 40
in KEY columns causing RDM

to disregard 40
inserting 114
warning 114

nullify delete 100, 119
nullify foreign key 119
number of characters to be

displayed on a line 190
number of lines to be displayed

on a screen/page 198

Index

RDM Administration Guide 327

O

omit the key 83
ONCE, access definition

parameter 57
one-to-many relationship

establishing using coded-
records 55

establising using SCAN 57
one-to-one keyed relationship 75
one-to-one relationship

establishing 57
establishing using coded-

records 55
OPEN command 195

with LIST 196
or operator

caution about using 56
described 55

order
defining in the access

statement 67
of access statements 50
of column definition statements

48
of keys in USING clause 176
of secondary keys 84

overriding
domain checking 44
normal data movement 67
view access 164

P

PAGESIZE command 198
parameters

access definition
ACCESS 54
ALLOW 66
data retrieval 57
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
related data sets 56
REVERSE 57
reverse order 57
SCAN 57

USING 60
VIA 58
view name 55, 56, 57, 58, 59,

60, 62, 67
WHERE 64

column definition
column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45

partial key 95
parts of a view 35
password for DBAID 138
PDM. See Physical Data

Manager
penetrating the database. See

database penetration
performance 84, 116
PERMIT command 199
physical actions, specifying for

data sets 66
physical changes to database

131
physical data item cross

reference report 262
physical data items

using in the column definitions
43

Physical Data Manager
data sets

how RDM accesses 17
physical key columns

causing direct reads for 40
physical keyed access 83, 84
position in the database 75
positional GET 75
positional modifier 179
positional relationship 75
prevent specified users from

accessing named global
views 255

print current statistics 211
PRINT-STATS command 200
programmer’s subset

commands included in 140

Index

328 P25-8220-45

R

range checking 104
range values limit 104
RDM

access to the SUPRA Server
directory 259

RDM access
strategy when specifying

WHERE without USING 64
RDM COMMIT request 159
RDM DELETE request 162
RDM index checking 162
RDM reports 263
RDM RESET 166
RDM status indicators 230
RDM. See Relational Data

Manager
RDML commands

effect of required columns 39
rebind a view 239, 240
record codes

and ordering 68
combining 56
defining in the access

statement 55
recovery

for RMS data sets 17
recovery unit journaling, enabling

137
referential integrity 106

enforcing in base views 40
example 107
examples 121
RDM checking 108
rules 108

reissue previous RDML
command (=) 148

relate a view to user(s) on the
Directory 199

related data set
defining in the access

statement 56
navigation 56

relating views to users 128
Relational Data Manager

access methods
and run-time 51

defining access method 51
described 15

file access to PDM and RDM
data sets 17

file types supported 17
handling of view-open requests

21
reads of database 85
reports available 31
role in SUPRA Server system

18
role in three schema

architecture 27
row construction 74
security 33
sign-on to the database 19
status indicators 226

relationships. See data
relationships

RELEASE command 201
release occupied storage after

closing a view 201
remove a view 202
REMOVE command 202
remove one or more row

occurrences from the
database 162

remove specified mark and
resources from list of marks
172

remove the name and definition
of a virtual view 214

RENUMBER command 203
replacements, allowing for rows

66
reports 97

description of 31
RDM 263

reposition a view 175
REQ parameter, column

definition 39
required columns 85, 99

defining 39
defining a constant value 41
defining a non-unique key 40
defining unique logical key 38
parameters for specifying 48

RESET
automatic 166
disabling automatic 188

RESET command 204
reset statistical information 210

Index

RDM Administration Guide 329

restrict delete 118
restricting user access to global

views 247
retrieve row for a view 173
retrieving data

in reverse order 57
reverse order

specifying 57
revoke user’s privilege to use a

view in SUPRA Server
Directory 164

RMS data sets 116, 162
access strategy when WHERE

is not specified 64
defining RMS key for in access

definitions 59
how RDM accesses 17
recovery 17
specifying direct reads 62

RMS files
enabling journaling 137

RMS keys
defining in the access

statement 59
RMS, retrieving 174
roll back database updates 204
row occurrences in database,

removing 162
RU journaling and network 137
run without a SUPRA Server

directory 259
run without a SUPRA Server

Directory 242
run-time

and RDM access methods 51

S

SAVE command 205
save specified view 149
saved views in DBAID 191, 195
saving views 205

maximum length allowed 47
SCAN, access definition

parameter 57
scanning a data set 57
secondary keys 84

and partial keys 95
defined 92
defining in the access

statement 58

reverse retrieval 57
USING parameter 58

security 33
overriding 164

sequential access 83
sequential search

defining for file or base view
search 40

serial scan 83
shared columns 126
shared updates

allowing 66
consideration 66

SHOW-NAVIGATION command
207

sign user off from DBAID 208
signing on to DBAID 138
SIGN-OFF command 208
sign-on as another user during a

DBAID session 209
SIGN-ON command 209
simple nonunique key 89
simple unique key 86
single quotes in UPDATE

command 216
source columns

defining for views 45
source relation 106
specific access syntax 53
specify all views on the directory

as global views 254
specify number of characters to

be displayed on a line 190
specifying domain override 44
SPECTRA availability 239
START 180
starting DBAID 136
STATS command 210
STATS-OFF command 211

with PRINT-STATS 200
with STATS command 210
with STATS-ON command 212

STATS-ON command 212
with PRINT-STATS 200
with STATS command 210
with STATS-OFF command

211
status indicators 224

FSI values 277
VSI values 278

stop mass inserting 186

Index

330 P25-8220-45

storage
of global views 234
of views, releasing 201

storage, freeing with the
UNDEFINE command 214

SUCCESSFUL COMPLETION -
LEVEL 05 138

SUPRA DBA
creating the column definition

with 36
difference from DBAID 35

SUPRA Server directory
running without 259
view length allowed 47

SUPRA Server Directory
and COMMIT 153

SUPRA Server system
role of Relational Data Manager

18
three schema architecture 23

SURE command 213
opposite of CAUTIOUS

command 213
syntax

for access statements
generalized access for base

views 52
generalized access for

derived views 53
specific access for base

views 53
for column definitions 37

T

table checking 104
table entries

maximum 104
table of values 104
target relation 106
test a view 240
test view. See DBAID test view
text file, input 249
three schema architecture

conceptual schema 25
described 23
external schema 26
internal schema 24
role of RDM in 27

tools for defining views 35

U

UNDEFINE command 214
unique constant 90
unique key 86

retrieval options 174
UPDATE 82

effect of required columns on
39

UPDATE command 215
update data values in the

database 215
update integrity 112
UPDATE processing with null

values 99
update records accessed through

a secondary key 92
user access

restricting 247
user to view on Directory 199
user to view relationship

removing 164
user view column definition 218
user views 30
USER-LIST command 218
users

relating views to 128
USING with DBAID GET 176
USING, access definition

parameter 58
USING, in the GO command 180

V

validation
checking 103
DOMAIN RETRIEVAL 97
exit 104
options 103
table 104
table usage report 262

validity checking
and constant values 48

Validity Status Indicators (VSI)
230

VIA 58
view definitions

examples 69
view text 235
view to user on Directory 199
view, removing 202
VIEW-DEFN command 219

Index

RDM Administration Guide 331

VIEW-DEFN output 220
views

access definitions 50
access syntax

generalized syntax for base
views 52

generalized syntax for derived
views 53

specific syntax for base views
53

column definitions 36
creating with DBAID 36
creating with SUPRA DBA 36
defining

order of column definition
statements 48

position of column definition
48

defining access definition
parameters

ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,

60, 62, 67
WHERE 64

defining column definition
parameters

column-name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45

defining column definition
syntax 37

defining in the access
statement 55, 56, 57, 58,
59, 60, 62, 67

described 28
maximum number of lines in

DBAID 189
opening

how RDM handles 21
parts 35
relating users 128
repositioning 175
selecting for the global view file

246
sharing columns 126
types 29
user views 30
uses 29

virtual views
displaying in DBAID 191
opening in DBAID 195
renumbering 203
text of 201

VSI values 278
VSI. See Validity Status

Indicators (VSI)

W

warning
null value 114

WHERE, access definition
parameter

defining 64
specifying without USING in

RMS data sets 64
wildcard character

position of in key 95

Index

332 P25-8220-45

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Introduction to the Relational Data Manager
	The role of the RDM in the SUPRA Server system
	How RDM signs on to the database
	How RDM handles view-open requests
	SUPRA Server's three schema architecture
	The internal schema: Physical Data Description
	The conceptual schema: base views
	The external schema: derived views
	How the RDM fits into the three schema architecture

	Views
	Two types of views
	How views are used
	User views

	RDM reports
	RDM security
	Example database

	Chapter 2 - Parts of a view
	Column definitions
	Access definitions

	Chapter 3 - View design considerations
	How RDM constructs rows
	Database penetration
	Database sweep
	Navigational constraints and boundary conditions
	Processing derived views
	Processing the GET command
	Processing the INSERT command
	Processing the UPDATE command
	Processing the DELETE command

	Keyed access to data
	Unique keys
	Simple unique keys
	Compound unique keys

	Non˚unique keys
	Simple non˚unique keys
	Compound non˚unique keys

	Constant keys
	Secondary access keys
	Generic reads

	Domains
	Null values
	GET Processing with null values
	INSERT processing with null values
	UPDATE processing with null values
	DELETE processing with null values
	MANTIS and SPECTRA support for nulls

	Default values
	Validation options
	Range checking
	Table checking
	Exits

	Join compatibility

	Referential integrity with RDM
	Integrity rules and checking
	Foreign key value integrity
	Insertion integrity
	Update integrity
	GET processing
	Deletion integrity
	Restrict delete
	Nullify delete
	Cascade delete

	Referential integrity examples

	Shared column values
	View-to-user relationships

	Chapter 4 - Physical and logical database changes
	Overview
	Physical and logical database actions

	Chapter 5 - Defining and testing views using DBAID
	Invoking DBAID
	Signing on to DBAID
	Using DBAID commands
	* command
	= command
	BIND command
	BY˚LEVEL command
	BYE command
	CAUTIOUS command
	COLUMN˚DEFN command
	COLUMN˚TEXT command
	COMMIT command
	COPY command
	DEFINE command
	DELETE command
	DENY command
	EDIT command
	ERASE command
	FIELD˚DEFN command
	FIELD-TEXT command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	line˚number command
	LINESIZE command
	LIST command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	PERMIT command
	PRINT˚STATS command
	RELEASE command
	REMOVE command
	RENUMBER command
	RESET command
	SAVE command
	SHOW˚NAVIGATION command
	SIGN-OFF command
	SIGN˚ON command
	STATS command
	STATS˚OFF command
	STATS˚ON command
	SURE command
	UNDEFINE command
	UPDATE command
	USER˚LIST command
	VIEW˚DEFN command
	VIEWS command
	VIEWS˚FOR˚USER command

	Chapter 6 - RDM status indicators
	Function Status Indicators (FSIs)
	Column Attribute Status Indicators (ASIs)
	Validity Status Indicators (VSIs)

	Chapter 7 - Optimizing view performance using bound and global views
	Differences between bound and global views
	Advantages of using global views
	Changing view text: a note of caution
	Changing the text of a view when using bound views only
	Changing the text of a view when using global views
	Changing the text of a view when bound views are included in a global view file

	Bound views
	Binding a view
	Using DBA to bind a view
	Binding a view using DBAID

	Ensuring that you update a bound view
	Deleting the bound view only
	Deleting both the view definition and the bound view
	Rebinding a view after making changes to view text
	Testing views: failing to rebind a view

	Global views
	Creating a Global View file
	Interactive Global View file creation
	Batch Global View file creation

	Example Global View input files
	Example Global View report file

	Options for RDM access to the SUPRA Server directory
	Running without the directory
	Running with the directory and with Global Views
	Running with the directory alone

	Chapter 8 - Generating RDM reports
	RDM reports
	Stage one—specifying the reports to be produced
	Stage two—generating the reports

	Appendix A - DBAID quick reference
	DBAID commands
	Definitions
	Status indicators
	ASI values
	FSI values
	VSI values

	Appendix B - Example RDM reports
	DBA report format description
	Domain usage report format description
	Logical Data Item report format description
	Physical Data Item report format description
	Validation Table Usage report format description

	Appendix C - Example user validation exits
	Appendix D - Example database
	Relations in the internal schema
	Base views in the conceptual schema
	Derived views in the external schema

	Index

